Electrolyte imbalance caused by the undesired vanadium-ions cross-over and water transport through the membrane is one of the main critical issues of vanadium redox flow batteries, leading to battery capacity loss and electrolytes volume variation. In this work, the evolution of discharged capacity and electrolyte volume variation were firstly investigated adopting commercial electrolyte for hundreds of charge-discharge cycles in vanadium redox flow batteries employing different membranes, varying thickness and equivalent weight. Subsequently, with the support of a 1D physics-based model, the origin of the main phenomena regulating capacity decay and volume variation has been identified and different modifications in the preparation of electrolytes have been proposed. Electrolytes characterized by an equal proton concentration between the two tanks at the beginning of cycling operation turned out to limit capacity decay, while increasing electrolyte proton concentration was effective also in the mitigation of volume variation. The most promising electrolyte preparation combined the effect of high proton concentration and null osmotic pressure gradient between the two tanks: compared to commercial electrolyte this preparation reduced the capacity decay from 47.7% to 20.9%, increased the coulombic efficiency from 96.2% to 98.9% and the energy one from 79.9% to 83.4%, and also implied a negligible volume variation during cycles. The effectiveness of this electrolyte preparation has been verified with different membranes, increasing the range of validity of the results, that could be thus applied in a real system regardless of the adopted membrane.

Dramatic mitigation of capacity decay and volume variation in vanadium redox flow batteries through modified preparation of electrolytes

Toja, F;Perlini, L;Casalegno, A;Zago, M
2023-01-01

Abstract

Electrolyte imbalance caused by the undesired vanadium-ions cross-over and water transport through the membrane is one of the main critical issues of vanadium redox flow batteries, leading to battery capacity loss and electrolytes volume variation. In this work, the evolution of discharged capacity and electrolyte volume variation were firstly investigated adopting commercial electrolyte for hundreds of charge-discharge cycles in vanadium redox flow batteries employing different membranes, varying thickness and equivalent weight. Subsequently, with the support of a 1D physics-based model, the origin of the main phenomena regulating capacity decay and volume variation has been identified and different modifications in the preparation of electrolytes have been proposed. Electrolytes characterized by an equal proton concentration between the two tanks at the beginning of cycling operation turned out to limit capacity decay, while increasing electrolyte proton concentration was effective also in the mitigation of volume variation. The most promising electrolyte preparation combined the effect of high proton concentration and null osmotic pressure gradient between the two tanks: compared to commercial electrolyte this preparation reduced the capacity decay from 47.7% to 20.9%, increased the coulombic efficiency from 96.2% to 98.9% and the energy one from 79.9% to 83.4%, and also implied a negligible volume variation during cycles. The effectiveness of this electrolyte preparation has been verified with different membranes, increasing the range of validity of the results, that could be thus applied in a real system regardless of the adopted membrane.
2023
Capacity decay
Electrolyte imbalance
Vanadium cross-over
Volume variation
VRFB
File in questo prodotto:
File Dimensione Formato  
Dramatic mitigation of capacity decay and volume variation in vanadium redox flow batteries through modified preparation of electrolytes.pdf

accesso aperto

Descrizione: Articolo
: Publisher’s version
Dimensione 9.28 MB
Formato Adobe PDF
9.28 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1258913
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 0
social impact