One-dimensional (1D) linear nanostructures comprising sp-hybridized carbon atoms, as derivatives of the prototypicalallotropeknown as carbyne, are predicted to possess outstanding mechanical,thermal, and electronic properties. Despite recent advances in theirsynthesis, their chemical and physical properties are still poorlyunderstood. Here, we investigate the photophysics of a prototypicalpolyyne (i.e., 1D chain with alternating single and triple carbonbonds) as the simplest model of finite carbon wire and as a prototypeof sp-carbon-based chains. We perform transient absorptionexperiments with high temporal resolution (<30 fs) on monodispersedhydrogen-capped hexayne H (C C)(6)Hsynthesized by laser ablation in liquid. With the support of computationalstudies based on ground state density functional theory (DFT) andexcited state time-dependent (TD)-DFT calculations, we provide a comprehensivedescription of the excited state relaxation processes at early timesfollowing photoexcitation. We show that the internal conversion froma bright high-energy singlet excited state to a low-lying singletdark state is ultrafast and takes place with a 200 fs time constant,followed by thermalization on the picosecond time scale and decayof the low-energy singlet state with hundreds of picoseconds timeconstant. We also show that the time scale of these processes doesnot depend on the end groups capping the sp-carbonchain. The understanding of the primary photoinduced events in polyynesis of key importance both for fundamental knowledge and for potentialoptoelectronic and light-harvesting applications of low-dimensionalnanostructured carbon-based materials.

Disclosing Early Excited State Relaxation Events in Prototypical Linear Carbon Chains

Kabacinski P.;Marabotti P.;Petropoulos V.;Iudica A.;Serafini P.;Cerullo G.;Casari C. S.;Zavelani-Rossi Margherita
2023-01-01

Abstract

One-dimensional (1D) linear nanostructures comprising sp-hybridized carbon atoms, as derivatives of the prototypicalallotropeknown as carbyne, are predicted to possess outstanding mechanical,thermal, and electronic properties. Despite recent advances in theirsynthesis, their chemical and physical properties are still poorlyunderstood. Here, we investigate the photophysics of a prototypicalpolyyne (i.e., 1D chain with alternating single and triple carbonbonds) as the simplest model of finite carbon wire and as a prototypeof sp-carbon-based chains. We perform transient absorptionexperiments with high temporal resolution (<30 fs) on monodispersedhydrogen-capped hexayne H (C C)(6)Hsynthesized by laser ablation in liquid. With the support of computationalstudies based on ground state density functional theory (DFT) andexcited state time-dependent (TD)-DFT calculations, we provide a comprehensivedescription of the excited state relaxation processes at early timesfollowing photoexcitation. We show that the internal conversion froma bright high-energy singlet excited state to a low-lying singletdark state is ultrafast and takes place with a 200 fs time constant,followed by thermalization on the picosecond time scale and decayof the low-energy singlet state with hundreds of picoseconds timeconstant. We also show that the time scale of these processes doesnot depend on the end groups capping the sp-carbonchain. The understanding of the primary photoinduced events in polyynesis of key importance both for fundamental knowledge and for potentialoptoelectronic and light-harvesting applications of low-dimensionalnanostructured carbon-based materials.
2023
File in questo prodotto:
File Dimensione Formato  
2023 JACS c-wires Kabacisnki.pdf

accesso aperto

: Publisher’s version
Dimensione 4.23 MB
Formato Adobe PDF
4.23 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1258637
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact