This paper proposes an enhanced version of the integral sliding mode (ISM) control, where a deep neural network (DNN) is first trained as a deep reinforcement learning (DRL) agent. Then, such a DNN is fine-tuned relying on a Lyapunov-based weight adaptation law, with the aim of compensating the lack of knowledge of the full dynamics in the case of robot manipulators. Specifically, a DRL agent is trained off-line on a reward depending on the sliding variable to estimate the unknown drift term of the robot dynamics. Such an estimate is then exploited to initialize and perform the fine tuning of the online adaptation mechanism based on the DNN. The proposal is theoretically analysed and assessed in simulation relying on the planar configuration of a Franka Emika Panda robot manipulator.

Integral sliding modes generation via DRL-assisted Lyapunov-based control for robot manipulators

Incremona, Gian Paolo;
2023-01-01

Abstract

This paper proposes an enhanced version of the integral sliding mode (ISM) control, where a deep neural network (DNN) is first trained as a deep reinforcement learning (DRL) agent. Then, such a DNN is fine-tuned relying on a Lyapunov-based weight adaptation law, with the aim of compensating the lack of knowledge of the full dynamics in the case of robot manipulators. Specifically, a DRL agent is trained off-line on a reward depending on the sliding variable to estimate the unknown drift term of the robot dynamics. Such an estimate is then exploited to initialize and perform the fine tuning of the online adaptation mechanism based on the DNN. The proposal is theoretically analysed and assessed in simulation relying on the planar configuration of a Franka Emika Panda robot manipulator.
2023
Proceedings of the 2023 European Control Conference (ECC)
978-3-907144-08-4
Sliding mode control, Deep reinforcement learning
File in questo prodotto:
File Dimensione Formato  
nn_smc_drl_robot_ECC23_original.pdf

Accesso riservato

Descrizione: Articolo principale
: Publisher’s version
Dimensione 1.78 MB
Formato Adobe PDF
1.78 MB Adobe PDF   Visualizza/Apri
nn_smc_drl_robot_ECC23_pub.pdf

accesso aperto

Descrizione: Articolo principale
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.67 MB
Formato Adobe PDF
1.67 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1257928
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact