In this work, the hysteresis of elastomer composites suitable for tire compounds was reduced by using CB functionalized with pyrrole compounds containing sulfur-based functional groups reactive with the elastomer chains. CB was functionalized with bio-based pyrrole compounds: 2-(2,5-dimethyl-1H-pyrrol-1-yl)ethane-1-thiol (SHP) and 1,2-bis(2-(2,5-dimethyl-1H-pyr-rol-1-yl)ethyl)disulfide (SSP), bearing an -SH and an -SS- functional group, respectively. SHP and SSP were synthesized via a one-pot two-step synthesis, with yields higher than 70%, starting from biosourced chemicals as follows: 2,5-hexanedione from 2,5-dimethylfuran, cysteine and cysteamine. The functionalization of CB was carried out by mixing the CB with PyC and heating, with quantitative yields ranging from 92 to 97%. Thus, the whole functionalization process was characterized by a high carbon efficiency. The formation of the covalent bond between SHP, SSP and CB, in line with the prior art of such a functionalization technology, was proven by means of extraction and TGA analyses. The reactivity of the sulfur-based functional groups with unsaturated polymer chains was demonstrated by using squalene as the model compound. Poly(styrene-co-butadiene) from solution anionic polymerization and poly(1,4-cis-isoprene) from Hevea Brasiliensis were the elastomers employed for the preparation of the composites, which were crosslinked with a sulfur-based system. Pristine CB was partially replaced with CB/SHP (33%) and CB/SSP (33% and 66%). The PyC resulted in better curing efficiency, an increase in the dynamic rigidity of approximately 20% and a reduction in the hysteresis of approximately 10% at 70 degree celsius, as well as similar/better ultimate tensile properties. The best results were achieved with a 66% replacement of CB with CB/SSP. This new family of reactive carbon blacks paves the way for a new generation of 'green tires', reinforced by a CB reactive with the polymer chains, which provides high mechanical properties and low rolling resistance. Such a reactive CB eliminates the use of silica, and thus the ethanol emission resulting from the condensation of silane is used as a coupling agent. In addition, CB-based tires are characterized by a higher mileage, at a moment in which the reduction in tire wear has become a primary concern.

Bio-Based Pyrrole Compounds Containing Sulfur Atoms as Coupling Agents of Carbon Black with Unsaturated Elastomers

Prioglio, Gea;Naddeo, Simone;Barbera, Vincenzina;Galimberti, Maurizio
2023-01-01

Abstract

In this work, the hysteresis of elastomer composites suitable for tire compounds was reduced by using CB functionalized with pyrrole compounds containing sulfur-based functional groups reactive with the elastomer chains. CB was functionalized with bio-based pyrrole compounds: 2-(2,5-dimethyl-1H-pyrrol-1-yl)ethane-1-thiol (SHP) and 1,2-bis(2-(2,5-dimethyl-1H-pyr-rol-1-yl)ethyl)disulfide (SSP), bearing an -SH and an -SS- functional group, respectively. SHP and SSP were synthesized via a one-pot two-step synthesis, with yields higher than 70%, starting from biosourced chemicals as follows: 2,5-hexanedione from 2,5-dimethylfuran, cysteine and cysteamine. The functionalization of CB was carried out by mixing the CB with PyC and heating, with quantitative yields ranging from 92 to 97%. Thus, the whole functionalization process was characterized by a high carbon efficiency. The formation of the covalent bond between SHP, SSP and CB, in line with the prior art of such a functionalization technology, was proven by means of extraction and TGA analyses. The reactivity of the sulfur-based functional groups with unsaturated polymer chains was demonstrated by using squalene as the model compound. Poly(styrene-co-butadiene) from solution anionic polymerization and poly(1,4-cis-isoprene) from Hevea Brasiliensis were the elastomers employed for the preparation of the composites, which were crosslinked with a sulfur-based system. Pristine CB was partially replaced with CB/SHP (33%) and CB/SSP (33% and 66%). The PyC resulted in better curing efficiency, an increase in the dynamic rigidity of approximately 20% and a reduction in the hysteresis of approximately 10% at 70 degree celsius, as well as similar/better ultimate tensile properties. The best results were achieved with a 66% replacement of CB with CB/SSP. This new family of reactive carbon blacks paves the way for a new generation of 'green tires', reinforced by a CB reactive with the polymer chains, which provides high mechanical properties and low rolling resistance. Such a reactive CB eliminates the use of silica, and thus the ethanol emission resulting from the condensation of silane is used as a coupling agent. In addition, CB-based tires are characterized by a higher mileage, at a moment in which the reduction in tire wear has become a primary concern.
2023
poly(1,4-cis-isoprene)
reduction in CO2 emission
sp2 carbon allotropes
sulfur-based pyrroles
File in questo prodotto:
File Dimensione Formato  
nanomaterials-13-02761-with-cover.pdf

accesso aperto

Descrizione: Articolo principale
: Publisher’s version
Dimensione 1.76 MB
Formato Adobe PDF
1.76 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1257818
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact