Inspired by decades of research in the compatibilization of fillers into elastomeric composites for high-performance materials, a novel polyurethane-based stretchable carbon ink is created by taking advantage of a Janus molecule, 2-(2,5-dimethyl-1H-pyrrol-1-yl)propane-1,3-diol (serinol pyrrole, SP). SP is used to functionalize the carbon and comonomer in the polymer phase. The use of SPs in both the organic and inorganic phases results in an improved interaction between the two phases. When printed, the functionalized material has a factor 1.5 lower resistance-strain dependence when compared to its unfunctionalized analogue. This behavior is superior to commercially available carbon inks. To demonstrate the suitability of ink in an industrial application, an all-printed, elastomer-based force sensor is fabricated. This "pyrrole methodology" is scalable and broadly applicable, laying the foundation for the realization of printed functionalities with improved electromechanical performance.

A Janus Molecule for Screen-Printable Conductive Carbon Ink for Composites with Superior Stretchability

Rubino, L;Margani, F;Galimberti, MS;Barbera, V
2023-01-01

Abstract

Inspired by decades of research in the compatibilization of fillers into elastomeric composites for high-performance materials, a novel polyurethane-based stretchable carbon ink is created by taking advantage of a Janus molecule, 2-(2,5-dimethyl-1H-pyrrol-1-yl)propane-1,3-diol (serinol pyrrole, SP). SP is used to functionalize the carbon and comonomer in the polymer phase. The use of SPs in both the organic and inorganic phases results in an improved interaction between the two phases. When printed, the functionalized material has a factor 1.5 lower resistance-strain dependence when compared to its unfunctionalized analogue. This behavior is superior to commercially available carbon inks. To demonstrate the suitability of ink in an industrial application, an all-printed, elastomer-based force sensor is fabricated. This "pyrrole methodology" is scalable and broadly applicable, laying the foundation for the realization of printed functionalities with improved electromechanical performance.
2023
electronic inks
polyurethane binders
printed electronics
pyrrole methodology
sp(2) carbon allotropes
sustainable functionalization
File in questo prodotto:
File Dimensione Formato  
Adv Eng Mater - 2023 - Zalar - A Janus Molecule for Screen‐Printable Conductive Carbon Ink for Composites with Superior.pdf

accesso aperto

Descrizione: Articolo principale
: Publisher’s version
Dimensione 1.66 MB
Formato Adobe PDF
1.66 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1257817
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact