Different real-world cognitive tasks evolve on different relevant timescales. Processing these tasks requires memory mechanisms able to match their specific time constants. In particular, the working memory (WM) utilizes mechanisms that span orders of magnitudes of timescales, from milliseconds to seconds or even minutes. This plentitude of timescales is an essential ingredient of WM tasks like visual or language processing. This degree of flexibility is challenging in analog computing hardware because it requires the integration of several reconfigurable capacitors of different size. Emerging volatile memristive devices present a compact and appealing solution to reproduce reconfigurable temporal dynamics in a neuromorphic network. We present a demonstration of WM using a silver-based memristive device whose key parameters, retention time and switching probability, can be electrically tuned and adapted to the task at hand. First, we demonstrate the principles of WM in a small scale hardware to execute an associative memory task. Then, we use the experimental data in two larger scale simulations, the first featuring WM in a biological environment, the second demonstrating associative symbolic WM.

Tunable synaptic working memory with volatile memristive devices

Ricci, Saverio;Ielmini, Daniele;
2023-01-01

Abstract

Different real-world cognitive tasks evolve on different relevant timescales. Processing these tasks requires memory mechanisms able to match their specific time constants. In particular, the working memory (WM) utilizes mechanisms that span orders of magnitudes of timescales, from milliseconds to seconds or even minutes. This plentitude of timescales is an essential ingredient of WM tasks like visual or language processing. This degree of flexibility is challenging in analog computing hardware because it requires the integration of several reconfigurable capacitors of different size. Emerging volatile memristive devices present a compact and appealing solution to reproduce reconfigurable temporal dynamics in a neuromorphic network. We present a demonstration of WM using a silver-based memristive device whose key parameters, retention time and switching probability, can be electrically tuned and adapted to the task at hand. First, we demonstrate the principles of WM in a small scale hardware to execute an associative memory task. Then, we use the experimental data in two larger scale simulations, the first featuring WM in a biological environment, the second demonstrating associative symbolic WM.
2023
File in questo prodotto:
File Dimensione Formato  
2023_nce.pdf

accesso aperto

: Publisher’s version
Dimensione 4.94 MB
Formato Adobe PDF
4.94 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1256335
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact