Industrial sectors’ innovative and sustainable development relies not only on solid government, society, academia, and industry but also on how they interact to set and implement strategic goals. In the fashion industry context, the new sociocultural scenario is increasingly driven by pressures from stakeholders to limit the impacts of industrial practices and to move toward new open ecosystems to create and maintain sustainable innovation. This article explores how such innovation can be enabled by design-driven actions in the context of the quadruple helix. Such a model aims to revitalize the areas of technological innovation and gradually advance the construction of the infrastructure needed for sustainable fashion growth, combining and integrating different knowledge. An initial literature review, complemented by case studies analysis, identifies the European fashion industry dynamics of innovation and the roles of industry, government, university, and society. In particular, the government is transforming from a mere controller to a facilitator of innovation synergies. Society relies on citizens revising their consumption habits by shifting toward a performative economy. Industry understands the need for collaboration and adopts new closed-loop supply chains to create and maintain its sustainable development. Universities enable new open system flows to make innovations concerning knowledge, technologies, and systems thrive, from technology transfer to knowledge co-creation. Based on the analysis, we propose a conceptual framework to understand the micro- and macro-dynamics of open innovation with a quadruple helix model to implement sustainability practices in the fashion sector through design-driven actions—reuse, repair, recycle, and refashion—that aim to eliminate the concept of waste to support local ecosystems toward establishing a closed-loop chain.
Fostering Fashion Ecosystems: A Quadruple Helix-Based Model for European Sustainable Innovation
E. D'Itria;C. Colombi
2023-01-01
Abstract
Industrial sectors’ innovative and sustainable development relies not only on solid government, society, academia, and industry but also on how they interact to set and implement strategic goals. In the fashion industry context, the new sociocultural scenario is increasingly driven by pressures from stakeholders to limit the impacts of industrial practices and to move toward new open ecosystems to create and maintain sustainable innovation. This article explores how such innovation can be enabled by design-driven actions in the context of the quadruple helix. Such a model aims to revitalize the areas of technological innovation and gradually advance the construction of the infrastructure needed for sustainable fashion growth, combining and integrating different knowledge. An initial literature review, complemented by case studies analysis, identifies the European fashion industry dynamics of innovation and the roles of industry, government, university, and society. In particular, the government is transforming from a mere controller to a facilitator of innovation synergies. Society relies on citizens revising their consumption habits by shifting toward a performative economy. Industry understands the need for collaboration and adopts new closed-loop supply chains to create and maintain its sustainable development. Universities enable new open system flows to make innovations concerning knowledge, technologies, and systems thrive, from technology transfer to knowledge co-creation. Based on the analysis, we propose a conceptual framework to understand the micro- and macro-dynamics of open innovation with a quadruple helix model to implement sustainability practices in the fashion sector through design-driven actions—reuse, repair, recycle, and refashion—that aim to eliminate the concept of waste to support local ecosystems toward establishing a closed-loop chain.File | Dimensione | Formato | |
---|---|---|---|
systems-11-00478-v2 (1).pdf
accesso aperto
:
Publisher’s version
Dimensione
3.47 MB
Formato
Adobe PDF
|
3.47 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.