In this paper, we propose a new method for the online redundancy resolution of robot manipulators, which implements a predictive strategy to calculate the optimal control action. In this way, it is possible to obtain a more efficient handling of the constraints, which represents one of the main issues in online resolution methods. The predictive model has been obtained by considering every joint as a kth-order integral system, and the predictive equations are derived from a continuous-time formulation. This allows the use of an irregular distribution of the prediction and control time instants and, as a consequence, longer prediction and control horizons can be obtained, without increasing the computational complexity of the algorithm. Finally, joint hard bounds are easily included in a linear-model-predictive-like framework, and the optimal control action is calculated by solving a linear quadratic problem. Simulation results for a 4-degree-of-freedom planar arm show the effectiveness of the method compared to purely local resolution techniques.

A Predictive Approach to Redundancy Resolution for Robot Manipulators

Faroni M.;Visioli A.
2017-01-01

Abstract

In this paper, we propose a new method for the online redundancy resolution of robot manipulators, which implements a predictive strategy to calculate the optimal control action. In this way, it is possible to obtain a more efficient handling of the constraints, which represents one of the main issues in online resolution methods. The predictive model has been obtained by considering every joint as a kth-order integral system, and the predictive equations are derived from a continuous-time formulation. This allows the use of an irregular distribution of the prediction and control time instants and, as a consequence, longer prediction and control horizons can be obtained, without increasing the computational complexity of the algorithm. Finally, joint hard bounds are easily included in a linear-model-predictive-like framework, and the optimal control action is calculated by solving a linear quadratic problem. Simulation results for a 4-degree-of-freedom planar arm show the effectiveness of the method compared to purely local resolution techniques.
2017
20th IFAC World Congress
continuous model predictive control
hard joint limits
inverse kinematics
optimal redundancy handling
redundant robots
robot manipulators
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1255966
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 13
social impact