In the last two decades self-healing of concrete through microbial based carbonate precipitation has emerged as a promising technology for making concrete structures more resilient and sustainable. Currently, progress in the field is achieved mainly through physical experiments, but their duration and cost are barriers to innovation and keep the number of large scale applications still very limited. Modelling and simulation of the phenomena underlying microbial based healing of concrete may provide a key to complement the experimental efforts, but their development is still in its infancy. In this review, we briefly present the field, introduce some key aspects emerged from the experiments, present the main ongoing developments in modelling and simulation of mineral and microbial systems, and discuss how their synergy may be accomplished to speed up progress in the near future.

Advancements in bacteria based self-healing concrete and the promise of modelling

Masoero E.;
2022-01-01

Abstract

In the last two decades self-healing of concrete through microbial based carbonate precipitation has emerged as a promising technology for making concrete structures more resilient and sustainable. Currently, progress in the field is achieved mainly through physical experiments, but their duration and cost are barriers to innovation and keep the number of large scale applications still very limited. Modelling and simulation of the phenomena underlying microbial based healing of concrete may provide a key to complement the experimental efforts, but their development is still in its infancy. In this review, we briefly present the field, introduce some key aspects emerged from the experiments, present the main ongoing developments in modelling and simulation of mineral and microbial systems, and discuss how their synergy may be accomplished to speed up progress in the near future.
2022
Bacterial based self-healing concrete
MICP
Modelling
File in questo prodotto:
File Dimensione Formato  
2022_Bagga_CBM.pdf

accesso aperto

: Publisher’s version
Dimensione 5.81 MB
Formato Adobe PDF
5.81 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1255837
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 12
social impact