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A B S T R A C T   

In the last two decades self-healing of concrete through microbial based carbonate precipitation has emerged as a 
promising technology for making concrete structures more resilient and sustainable. Currently, progress in the 
field is achieved mainly through physical experiments, but their duration and cost are barriers to innovation and 
keep the number of large scale applications still very limited. Modelling and simulation of the phenomena un
derlying microbial based healing of concrete may provide a key to complement the experimental efforts, but their 
development is still in its infancy. In this review, we briefly present the field, introduce some key aspects 
emerged from the experiments, present the main ongoing developments in modelling and simulation of mineral 
and microbial systems, and discuss how their synergy may be accomplished to speed up progress in the near 
future.   

1. Introduction 

Concrete emerged as the most used construction materials around 
the world after the invention of Portland cement in the early 19th cen
tury. Cement is the binding component in the concrete mix, along with 
water and aggregates – rock, sand, or gravel. Almost two centuries later, 
concrete is here to stay. The world is urbanizing at an accelerated pace, 
with a projection that a city equivalent of New York will be built every 
month for the next forty years [1]. Concrete is the construction material 
of choice because it combines low cost with many desirable properties 
for a construction material, including workability, high compressive 
strength and durability. Global concrete production is estimated to in
crease by up to 23 % by 2050 [2], and, in the early 21st century alone, 
China has produced more cement than the United States in the entire 
20th century (25.8 billion tonnes and 4.3 billion tonnes, respectively) 
[3]. 

However, concrete has a major drawback of being an important 
contributor to the global greenhouse gas emissions, and responsible for 
up to 8 % of the total anthropogenic CO2 emissions due to its use of 

cement [4,5]. In this regard, the production of one tonne of Portland 
cement releases ~0.86 tonnes of CO2 into the atmosphere, where ~40 % 
of these emissions can be associated to the burning of fossil fuels and 
~60 % to the calcination of limestone to produce calcium oxide [6,7]. 
Decarbonizing concrete production is now high on the sustainability 
agenda, with innovation targeting both the production process (e.g., a 
switch to more sustainable fuels) and the material itself [8–13]. For the 
material, there is a push towards adopting new and more sustainable 
chemical compositions, especially to include a range of by-products for 
reducing reliance on calcined limestone, and to extend the service life of 
both existing and new concrete structures. In both cases, however, there 
are uncertainties around the durability of novel concretes, or of tradi
tional concretes serving for longer periods than documented in the 
literature. 

The durability of concrete is threatened by various processes of 
physical, chemical, mechanical, and biological nature. The degradation 
of concrete is particularly affected by the opening and propagation of 
cracks, especially when these trigger and accelerate the corrosion of 
steel rebars in reinforced concrete. To date, repairing cracks costs 
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around €130/m3, which is about double the current production cost of 
concrete [14]; in the United Kingdom alone, the total repair and main
tenance infrastructure budget is higher than that for new works [15]. 
Building resilience against crack opening is thus a key pathway to ensure 
durability, extend service life, and thus reduce the carbon footprint and 
maintenance cost of concrete structures. One way to achieve such 
resilience is to promote the material’s ability to heal its own cracks when 
they form. Under certain conditions, such as presence of water in the 
environment and absence of tensile stress, the healing of concrete can be 
autogenous, thanks to delayed hydration of still un-hydrated cement 
particles in the aged mix, or carbonation of calcium hydroxide in the 
material to produce calcium carbonate [16,17]. However, autogenous 
self-healing is restricted to microcracks smaller than 300 µm and is not 
sufficiently reliable as the mechanisms behind it are not well understood 
and its behaviour is inconsistent [18]. Therefore, researchers are 
considering other environmentally friendly alternatives to enable and 
enhance autonomous self-healing of cracks in concrete structures, such 
as admixtures (including microcapsules containing mineral healing 
agents [19] or bacterial spores [20]), shape memory polymer tendons 
[21,22] and vascular networks [23,24]. 

One of the most promising options under study is self-healing of 
concrete based on microbially induced calcium carbonate precipitation 
(MICP). MICP was first observed in Pseudomonas calcis [25] and occurs 
as a by-product of certain microbial metabolic activities, when the 
carbonate ions produced by microbes promote the precipitation of cal
cium carbonate in the presence of a calcium source. The carbonate 
production is influenced by numerous factors including pH, tempera
ture, dissolved inorganic carbon or calcium ions concentration in the 
environment [26–28]. When used for promoting the self-healing of 
concrete, the microbes need to be added in the concrete matrix, nor
mally as spores, and are usually encapsulated in a carrier since the 
survival of bacteria is affected by the harsh conditions during the initial 
mixing and by the reduction in pore sizes taking place during cement 

hydration and concrete hardening. The promise of this bacteria based 
self-healing concrete (BBSHC) is to save on labour and raw materials 
required for repairs, and to extend the service life of structures [29–32]. 
The overall process is presented in Fig. 1. 

The global market for self-healing concrete is expected to expand at a 
compound annual growth rate of 37.0 % from 2020 to 2027 [35], but 
this estimation is based mainly on admixture or vascular technologies. 
The contribution of BBSHC is still very small because to date there is no 
unified or standardized approach for developing the process for large- 
scale applications. BBSHC is a vibrant research field, with numerous 
studies published in the last decade, followed by comprehensive reviews 
focusing on the metabolic pathways, type of microorganisms, culture 
media composition or test procedures for assessing the performance 
after healing [36–45]. However, while experimental work has pro
gressed significantly, modelling of BBSHC is less advanced and not yet 
integrated in the overall process development (see Fig. 1). 

A number of models exist for autogenous and autonomous self- 
healing of concrete, not of bacterial origin. Such models have been 
reviewed several times in recent years [46–49], with mentions to BBSHC 
being limited to the early work of Zemskov et al. [50]. These models 
include a description of self-healing mechanisms at the constitutive 
level, for a representative elementary volume (REV) of the material. This 
further informs larger-scale simulations which are based on various 
techniques, e.g. Finite Elements, Discrete Elements, and lattice models. 
The healing mechanisms are mostly based on reasonable assumptions 
directly at the REV level, and not derived from models at lower scale. In 
some cases, however, smaller-scale simulations have also been used, to 
predict microstructural changes and tailor the constitutive models to 
specific compositions of concrete [51,52]. By contrast, there are very 
few models for BBSHC, all treating the underlying mineralization pro
cess at the constitutive and at the larger, continuum, levels [50,53–55]. 
Therefore, the scope of this manuscript is to review the existing models 
and simulations of BBSHC and to identify other current modelling 

Fig. 1. Current process development for obtaining BBSHC. (1) The first step is to select a bacterial strain capable of CaCO3 precipitation, appropriate for the 
application considered. (2) The second step is to characterize the selected strain and its carbonate precipitation efficiency. (3) Step three is to select a growth medium 
and to produce spores. (4) In step four there is the selection of the method for including the biological material in concrete, followed in step five (5) by testing the 
healing of cracked lab samples. The mechanical properties of the healed samples are evaluated in step six (6). At the end of the process and based on a rigorous 
economic analysis, large-scale applications are considered (7), but very few are reported to date. (Crystals picture is reproduced with permission from [33]. Large 
scale application picture is reproduced with permission from [34]). 
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techniques that, whilst still not applied to MICP, could be leveraged to 
advance the current state of the art. Particular emphasis is placed on 
simulating the co-evolution of mineral and microbial systems, as this 
would offer the key to predictive multiscale models of BBSHC that may 
significantly accelerate the development of new solutions, help reducing 
cost, and thus support large-scale applications. The manuscript starts 
with a short overview of MICP pathways and mineral formation, lab 
scale experimental studies, and large-scale applications. In the second 
part, relevant modelling-based approaches are discussed in the context 
of simulating BBSHC. Finally, some promising future directions are 
discussed. 

2. MICP pathways and mineral formation 

There are different pathways through which microorganisms pre
cipitate calcium carbonate, and these pathways can be broadly classified 
into two groups: autotrophic (e.g., photosynthesis or methane oxida
tion) and heterotrophic (e.g., sulphate reduction, organic acid oxidation 
or nitrogen cycle), and comprehensive reviews have been recently 
published [43,44]. By far, reactions of the nitrogen cycle, and in partic
ular ureolysis, are the most studied pathways for MICP. The precipitation 
of the mineral takes place on the cell surface and on the extracellular 
polymeric substances surrounding the cells, which provide nucleation 
sites. Mineral precipitation is actually a by-product of the microbial 
metabolism, which changes the local environment chemistry making it 
favourable for crystal formation [43]. 

The mineral resulting from MICP can be in any of the three poly
morphs of CaCO3: calcite, vaterite or aragonite, and for BBSHC appli
cations calcite is preferred as it is the most thermodynamically stable. An 
important factor influencing the crystal type is the calcium source, but 
the morphological differences in the crystal formation are also strain 
specific [56], with non-ureolytic bacteria reported to precipitate mixed 
organic/inorganic crystals while ureolytic ones produce inorganic, ho
mogenous crystals [57]. Different studies regarding the influence of 
calcium sources on MICP have been published in recent years. Some of 
them concluded that when ureolytic bacteria were used, calcium chlo
ride is the best source as it gave more calcite production compared to 
other calcium compounds [58,59]. In contrast, other studies considering 
non-ureolytic bacteria concluded that the highest amount of total 
precipitated calcium carbonate was obtained when calcium glutamate 
was used, while the lowest was observed when using calcium chloride 
[60]. Moreover, the calcium source has also been reported to have an 
influence on the performance of BBSHCs, with some (calcium formate) 
reported to enhance the compressive strength compared to controls, 
while others (calcium nitrate and calcium lactate) resulting in a lower 
compressive strength than the controls when used with the same alkali 
resistant bacterial spores [61]. Nevertheless, it is not possible to 
generalise that the type of calcium carbonate precipitated is only related 
to the calcium source or bacterial strain, as many key factors (e.g., pH, 
availability of nucleation sites or calcium concentration) also have an 
important effect on the precipitation process. 

3. Experimental studies of MICP 

Precipitation of calcium carbonate by bacteria is considered a gen
eral phenomenon if the appropriate growth medium and conditions are 
provided [62]. For example, recently Reeksting et al [57] investigated a 
library of 74 soil bacteria, with both ureolytic and non-ureoytic species, 
showing that the vast majority of them (89 %) were able to produce 
calcium carbonate in suitable experimental conditions. However, the 
rate of precipitation, the quantity and the quality of the mineral ob
tained varied widely. This variety is reflected in the published literature 
on BBSHC, where there is a great diversity in microorganisms, carbon 
and calcium sources, ways of loading the bacteria in the cementitious 
matrix, and performance tests after cracking and healing. For 2020 and 
2021 alone, the number of publications returned by Scopus for “bacteria 

based self-healing concrete” or “MICP concrete” is more than 150. A 
necessarily selective list of the bacterial species used in MICP, their 
pathways and some details of the experimental studies is presented in 
Table 1. Arguably, the most studied species for MICP is Sporosarcina 
pasteurii, a non-pathogenic and endospore-producing soil bacterium 
with high urease activity and tolerance for high pH [63]. 

In most experimental studies bacteria, as either vegetative cells or 
spores, are encapsulated in a carrier to retain their viability for a longer 
time inside the concrete matrix. The tested encapsulation materials 
include aerated concrete granules (ACG) [67], ceramsite [70], silica gels 
[71], polyurethane [85], hydrogels [93] and expanded clay particles 
[90] (more are listed in Table 2). The addition of the carriers affects the 
strength of the BBSHC [102,103]. Earlier reports indicated that the 
presence of bacterial cells in concrete increases the strength of the 
structure through the deposition of calcite, which decreases water 
permeability and provides resistance to acids [68,69,104]. More recent 
research argues that any strength improvement is due to the presence of 
bacterial cells per se, but not because of any activity by the bacteria (e.g., 
by providing nucleation sites for cement minerals or behaving like 
organic fibres reinforcing the matrix) [105]. At the same time, cell 
debris resulting from the vegetative cells can negatively affect the 
compressive strength of the concrete, by making it more porous over 
time [32,82,106]. 

Most laboratory experiments to date have used reagent grade 
chemicals and pure cultures. However, this is probably neither sus
tainable nor cost-effective for large-scale applications. Alternative ways 
to produce BBSHC were also tested, involving mixed cultures [107,108] 
and industrial by-products as growth media (e.g., the effluent from the 
dairy industry [109], corn wet milling processes [110], or from a biogas 
plant [111]) or calcium sources (e.g., from chlor-alkali industrial waste 
[112]), but with mixed results on improving the process performance. 

4. Large-scale industrial applications of self-healing concrete 
using MICP 

Despite the abundance of laboratory experiments of BBSHC, there 
have been relatively few large-scale industrial site trails or published 
applications of the technology. The pioneer company in manufacturing 
BBSHC is Basilisk©, established in 2015 by TU Delft in collaboration 
with the Dutch company Corbion. BBSHC has been commercially 
available since 2017. Basilisk© produces BBSHC for construction as well 
as a mortar and a liquid solution for repair of old existing buildings. The 
first large-scale applications to test BBSHC under environmental con
ditions were done in the Netherlands for a wastewater purification tank 
and a water reservoir, which have been in operation since August 2016 
and July 2018, respectively. The results are not yet conclusive as more 
time is needed for concrete to age and develop cracks [113], but so far 
there are no evident negative effects of incorporating the biological mix 
in the concrete matrix. Prior to this, the same research group had a pilot 
scale study in a parking garage concrete deck and showed that the 
bacteria-based healing mixture sprayed on the surface of previous 
existing cracks in the concrete slabs reduced water leakage [29]. 

In October 2015, the first large-scale self-healing concrete trial in the 
United Kingdom was conducted by Davies et al. [114] as part of the 
Materials for Life (M4L) project. They constructed concrete panels with 
four different healing techniques, one of them being bacteria-infused 
expanded perlite particles, as a part of the Valleys Highway upgrading 
project. For the BBSHC, the panel was successfully cast using standard 
concrete practice with no negative effects observed on its setting or 
hardening properties. However, no significant self-healing that could be 
attributed to MICP was observed at the end of the trial, likely due to cold 
temperatures, a suboptimum ratio of spores to growth media or an un
evenly distribution of spores throughout the concrete matrix [115]. The 
study concluded that different methods must be investigated to find a 
reliable autonomous self-healing solution for a given damage 
mechanism. 
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A more recent large-scale application installed in Antwerp, Belgium 
[116], consists in a roof slab made of BBSHC including a mixed ureolytic 
culture and anaerobic granular bacteria. The monitoring of the slab is 
ongoing as in one year no cracks have been observed; the site test is 
accompanied by control samples in the laboratory, whose cracks indeed 
got sealed after wet and dry cycles. 

The closest description of an industrial production of BBSHC was 
reported in the last couple of years in China, where it was applied in the 
construction of a metro station [34] and a lock channel wall [117]. The 
reported studies used spore powder obtained through spray drying and 
capsule-based healing agents and both showed good efficiency in heal
ing early cracks in concrete. In those works, the authors stress the dif
ficulty of integrating microbial healing agents (which need to be 
protected from humid environments to avoid early germination) in the 
existing production lines of commercial concrete. 

Regarding the use of commercial bacteria-based healing agents (i.e., 
granular Basilisk© healing agent), two very recent projects include an 
underground parking garage (Rotterdam, Netherlands) and a water tank 
(Sapporo, Japan). The latter is part of a main water purification project 
and will require 5000 m3 of BBSHC when completed [118]. 

5. Limitations of BBSHC and scope for modelling 

After more than two decades since its first reported application, 
MICP is considered a process that may be conveniently exploited in 
building materials, but it does not provide yet consistent and cost- 
effective solutions [119,120]. Despite the relatively extensive set of re
ported experimental results, there are still various aspects of MICP in 
concrete that are not fully understood, due to the complexity of the 
underlying mechanisms, and indeed there are conflicting results in the 
literature for similarly performed experiments, as remarked also by 
other authors [42]. Extensive research is required to understand the 
genetic factors associated with MICP for different pathways, as this will 
guide the selection of the most suitable species for a particular appli
cation [121]. Spore production and encapsulation are expensive pro
cesses, so it is necessary to find low-cost solutions to make BBSHC an 
accessible product [14,34]. Many studies report improved mechanical 

Table 1 
Selective examples of experimental studies using MICP.  

No Species Pathway Material Comments Reference 

1 ACRN3 & ACRN5 Ureolysis Cement Cement samples including ACRN5 had reduced chloride ion permeability 
and increased electrical resistivity and compressive strength of concrete 

[64] 

2 Alkalihalobacillus 
pseudofirmus 

Ureolysis Cement After 10 days of curing, viable spores in the cement stone were 7 % of the 
ones in the original spore suspension 

[65] 

3 Bacillus cereus Deamination Concrete Reduced water permeability; potentially pathogenic species. [66] 
4 Bacillus cohnii Organic acid 

utilization 
Cement Use of endospore forming bacteria for MICP [65,67,32] 

5 Bacillus licheniformis Ureolysis Concrete Wheat bran used as substrate [68] 
6 Bacillus megaterium Ureolysis Concrete Used dairy industry waste as nutrient medium [69,68] 
7 Bacillus mucilaginous Ureolysis Cement Immobilized using ceramsite [70] 
8 Bacillus sphaericus Ureolysis/ 

Denitrification 
Mortar/Concrete Studied effect of multiple protection materials 

Immobilization of bacteria using biochar 
[71,72,73,74] 

9 Bacillus subtilis Organic acid 
utilization 

Concrete Bacterial spores immobilized using light weight aggregates and graphite 
nano platelets 

[75] 

10 Diaphorobacter 
nitroreducens 

Nitrate reduction Concrete Reduced setting time [72] 

11 Lysinibacillus 
bornitolerans 

Non-ureolytic Mortar Used alternative nutrient source including malt powder, corn syrup, rice 
bran and (NH4)2SO4 

[76,77] 

12 Myxococcus xanthus Deamination Limestone Produced vaterite [78] 
13 Proteus mirabilis 

Proteus vulgaris 
Ureolysis Concrete Cannot survive under high pH in concrete. P. mirabilis is a human pathogen [79] 

14 Pseudomonas 
aeruginosa 

Ureolysis Portland cement No significant effect of compressive strength and a pathogen [63] 

15 Shewanella spp Ureolysis Cement Formed silicate contributing in compressive strength [80] 
16 Sporosarcina pasteurii Ureolysis Limestone, 

Portland cement 
Bind sand columns in oil field, 
Increased compressive strength, 
Using live cells affected the strength of concrete. 
Vegetative cells retained viability for around 330 days in hardened mortar 
samples 

[81,82,83,84,578586]  

Table 2 
Encapsulation techniques used for bacteria before they are included in the 
cement-based matrix.  

No Encapsulation technique Bacterial species 
used 

Reference 

1 Aerated concrete granules (ACG) Bacillus cohnii, [67,87] 
2 Air-entraining admixture Bacillus cohnii [88] 
3 Calcium alginate beads Bacillus subtilis [89] 
4 CERUP, Clay, ACDC, Activated carbon Bacillus sphaericus, 

Diaphorobacter 
nitroreducens 

[72] 

5 Ceramsite Bacillus 
mucilaginous 

[70] 

6 Diatomaceous earth Bacillus 
mucilaginous 

[31] 

7 Expanded clay particles Bacillus spp 
(unspecified) 

[90] 

8 Expanded perlite Bacillus cohnii [91] 
9 Fly ash B. megaterium [92] 
10 Hydrogel Bacillus sphaericus [93] 
11 Magnetic iron oxide particles Bacillus 

licheniformis, 
Bacillus sphaericus 

[94] 

12 Melamine microcapsule Bacillus sphaericus [95] 
13 Natural fibres Bacillus subtilis, 

Bacillus cohnii, 
Bacillus sphaericus 

[96] 

14 Polyurea Bacillus 
pseudofirmus 

[97] 

15 Polyurethane Sporosarcina 
pasteurii 

[85] 

16 Recycled coarse aggregate, Virgin fine 
aggregate, Iron oxide nano/micro 
particles, Bentonite nano/micro 
particles 

Bacillus subtilis [98,99] 

17 Silica fume Sporosarcina 
pasteurii 

[81] 

18 Silica gel Bacillus sphaericus [100] 
19 Zeolite Sporosarcina ureae, 

Sporosarcina 
pasteurii 

[101]  
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properties of BBSHC after cracking and healing, but they draw this 
conclusion mostly based on compressive strength and water perme
ability tests, which are not necessarily representative measures as they 
do not reflect the more complex stress states in concrete structures [37]. 

Currently, the development and improvement of new and existing 
BBSHC solutions relies entirely on experiments, which are rather 
expensive and necessarily slow, due to the long timescales of concrete 
degradation, especially in field trials and large-scale applications. 
Another aspect that is slowing down progress is that different research 
groups often use different experimental set-ups and protocols for testing 
self-healing solutions and for measuring their effectiveness. This lack of 
standardization is currently a key barrier for the development and 
commercialization of BBSHC [122,123]. All these aspects create scope 
for modelling and simulation to complement the experimental efforts. 
Albeit still scattered to some extent, the current body of experimental 
results have largely uncovered the main mechanisms in biomineraliza
tion, creating the basis for modelling to rationalize these mechanisms 
across different experimental protocols and include them into predictive 
tools that can help integrate, validate, and even design future experi
ments. Indeed, it has been recognized that realistic numerical simula
tions could significantly accelerate the development of microbial self- 
healing technologies [36]. Such models and simulations would have to 
address the multiple length and time scales of biomineralization and 
concrete degradation, to ultimately optimize the cost, production, and 
efficiency of BBSHC, towards a wider and faster adoption in 
construction. 

6. Mathematical modelling approaches 

The current paucity of realistic numerical simulations of MICP is 
largely due to the complexity of the process, which takes place across 
multiple time and length scales, and involves coupled biological, 
chemical, mechanical, and hydraulic phenomena. In this section we 
present independent developments in molecular simulations [<10 nm] 
of mineral phases and bio-relevant systems, such as proteins and 
membranes. We then move up to the mesoscale [< 100 μm], presenting 
again separate developments for mineral and biological systems. The 
mesoscale approaches provide the starting point to consider coupled 
simulations aiming to describe the representative elementary volumes 
(REV) for MICP and BBSHC systems. The current literature only features 
a couple of mesoscale simulations of MICP, not yet applied to BBSHC, 
which offers an opportunity for future contributions. Subsequently we 
present current macroscale simulations [greater than100 μm] of MICP; 
also in this case there are very few works, none of which addresses 
BBSHC despite a richer literature exists on other types of self-healing 
concrete [46,49]. 

The transition from mesoscale to macroscale models highlights the 
current paucity of methods to develop constitutive laws for MICP sim
ulations. A few contributions in this area are identified and presented in 
some detail. At the macroscale, we are including also some microbial 
self-healing models which were proposed and tested mainly for sand 
columns or soils as some of their findings are relevant also for cemen
titious materials; indeed, many of the underlying physical processes 
governing the self-healing response are common between the two ma
terials. The question on how to derive constitutive laws from scaling-up 
results of mesoscale simulations is thus presented, in general for self- 
healing processes in concrete, but also particularly for MICP and 
BBSHC. Finally, we provide an overview of current machine-learning 
approaches to address the complexity of MICP, to potentially enhance 
and, in some cases, even replace altogether the demanding, physics- 
based simulations. 

6.1. Models at molecular scale 

At the molecular scale there is an established literature on atomistic 
models and simulations of cement minerals, including anhydrous and 

hydrated phases and with emphasis on calcium – silicate – hydrates 
(C–S–H), which are the main binding phase in ordinary cement pastes 
[124], see Fig. 2 (A). The main techniques at this scale range from full 
ab-initio simulations to atomistic simulations based on force fields, to 
coarse-grained approaches still with molecular resolution, such as the 
primitive model. Many properties have been computed using these 
techniques (see recent reviews, e.g. [129–131]), also for cement phases 
beyond C–S–H [132–135]. In the context of self-healing concrete, 
albeit not for MICP, the most relevant efforts are those concerned with 
interfacial properties and interactions between cement minerals and 
other phases, typically organic ones. The interested reader can find a 
brief review of molecular simulations of the interactions between 
C–S–H and carbon nanotubes here [48], a more extensive review of 
the interactions between cement minerals and admixtures here [136], 
and simulations of interactions between cement minerals and polymers 
leading to self-healing capabilities here [137]. The lack of molecular 
simulations of cement minerals in the context of MICP is probably due to 
the complexity of the process and of the molecules and reactions 
involved. However, there may be scope to explore some fundamental 
parts of the process, such as how the cement minerals interact with 
extracellular polymeric substances or with selected portions of a bac
terium’s membrane. 

On the modelling of bacteria, molecular dynamics (MD) was used for 
simulating protein structural dynamics that are intrinsic to biological 
processes or the complex membranes or bacterial flagellum 
[126,138,139]. These models consist of tens of thousands of protein 
molecules and tens of different kinds of proteins (see Fig. 2 (C)). Systems 
with even further complexity may be attained through developments in 
coarse-grained molecular simulation [140] and with the progress of 
computing power; however, increasing the complexity of the simula
tions may not be needed for simulating bacteria in MICP models. By 
contrast, the analysis of subsystems with limited size and complexity 
may suffice to understand mechanisms and processes and, eventually, to 
inform larger-scale simulations. For example, one aspect which may be 
of interest to simulate by MD is the extrapolymeric substances and the 
pili on the surface of the cells, since the interaction between bacterial 
cells and minerals is dominated by interfacial processes, whereas the 
internal structure of a cell plays only a minimal role. 

6.2. Models at mesoscale 

The mesoscale between 10 nm and 100 μm is crucial for micro
structure development and degradation in the cement paste, which 
largely control the macroscopic properties of concrete. The paste is a 
multi-phase systems and various models have focused on simulating the 
spatial, kinetic evolution of solid and liquid phases during hydration and 
aging. The seminal review in [141] provides a good introduction of some 
of the main models addressing microstructure development. An impor
tant limitation of these models, however, is that they do not predict the 
evolution of mechanical stress and deformations accompanying the 
chemical transformations. Such mechanical aspects are essential to 
describe degradation phenomena (and thus self-healing) in concrete, e. 
g. crystallisation pressure [142], eigenstress relaxation during creep 
[143,144], and drying shrinkage [145]. A focus on mechanical in
teractions and related processes characterizes a more recent class of 
particle-based, mesoscale simulations of cementitious materials [146]. 
These simulations are based on a rigorous statistical mechanical 
framework, coarse-graining the interactions between millions of atoms 
into potentials of mean forces between larger coarse-gained units or, in 
other words, effective interaction potentials between nanoparticles. To 
date, particle-based simulations have focused almost exclusively on 
C–S–H, capturing a wide range of structural, physical, and mechanical 
properties for this phase. Extension to other cement minerals is however 
well in reach of current capabilities, e.g. [147] on interactions between 
C–S–H and fly ash particles. In a recent development, chemical 
transformations between aqueous and solid phases, modelling 
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microstructural evolution, have been implemented alongside mechani
cal interactions in particle-based simulations, exploiting the Kinetic 
Monte Carlo framework [148]. Thus far, these new chemo-mechanical 
simulations have addressed C–S–H precipitation [149], dissolution 
of tricalcium silicate [150], and recently carbonation of a C–S–H / Ca 
(OH)2 system [125], as a first example of autogenous self-healing 
mechanisms in concrete. In all these endeavours, however, the biolog
ical component is still absent. 

Individual-based Models (IbM) of microbial systems employ a 
discrete modelling framework analogous to that of the above-mentioned 
particle-based simulations of minerals. IbM is arguably-one of the most 
promising frameworks to include the bacterial component in BBSHC 
modelling. In IbM, bacteria are represented as rigid discrete particles, 
each of which is associated with a set of properties such as mass, posi
tion, and velocity [112,127]. These properties are affected by internal or 
external processes (e.g., diffusion), resulting in microbial growth, decay, 
motility, etc. The models represent the interaction of bacteria with each 
other and with the environment (Fig. 2(D)). The individual represen
tation of bacteria allows the inclusion of a specific metabolism [151] or 
genetic circuits and metabolic pathways [152], and the calculation of 
the local pH, an important factor in self-healing. 

6.3. The REV for BBSHC 

The previous sections 5.1 and 5.2 have discussed separate de
velopments in simulations of mineral and biological systems. The next 
step is to combine these models of MICP and BBSHC at a mesoscale that 
is sufficiently large to extract constitutive behaviours for larger scale 
models, viz. to simulate a representative elementary volume (REV). 

One biomineralization model which explicitly includes the biofilm 
development at the REV scale was proposed by Zhang and Klapper 

[153]. The model consists of three phases (calcite, biofilm and solvent; 
calcite and biofilm are considered viscous fluids), each represented by 
its own volume fraction, which satisfies conservation of mass and mo
mentum laws with addition of a free energy of mixing. In the compu
tational domain were included the solvent (unspecified), biofilm, 
dissolved urea, and calcium chloride. Urea hydrolysis is catalysed by 
ureolytic bacteria and the subsequent carbonate species distribution 
leads to the formation of carbonate ions. In the presence of soluble 
calcium ions, calcite precipitation occurs once its saturation state ex
ceeds a critical level. The 2D numerical simulations qualitatively reveal 
essential temporal and spatial features of biofilm induced calcite pre
cipitation, as well as the significant impact of flow on its distribution 
(Fig. 3). Their model does not include the cement component of BBSHC. 

A second example of MICP simulations was developed for a packed 
sand porous media by Qin et al. [128] and includes a comprehensive 
pore-network model which includes ureolytic biofilm evolution, 
considering its growth, decay, attachment and detachment. They have 
used a novel pore generator by initially randomly filling predefined pore 
bodies in a given computational domain. Their results showed that the 
calcite precipitation is dependent on the biofilm distribution (Fig. 4). 
This suggests that the models including a constant ureolysis rate may not 
give a fair representation of the MICP process. 

The two simulation works presented in this section are the only ones 
in the literature addressing MICP at the REV level as we defined it here; 
mesoscale simulations of BBSHC instead are still to be attempted. One 
common limitation of the aforementioned simulations, in the context of 
BBSHC, is that the mineral part of the domain (except for the CaCO3) is 
not evolving during the simulation, accompanying the evolution of the 
biofilm and of the solution chemistry. To include this coupling between 
mineral and biological components, future endeavours could leverage 
the developments on discrete mesoscale models of mineral and biofilms 

Fig. 2. Scales for representing the MICP process. (A) A molecular model of calcium – silicate – hydrate (C–S–H): the blue and white spheres are oxygen and 
hydrogen atoms of water molecules, respectively; the green and gray spheres are inter and intra-layer calcium ions, respectively; yellow and red sticks are silicon and 
oxygen atoms in silica tetrahedra (reproduced with permission from [124]). (B) Kinetic Monte Carlo simulation of autogenous healing (blue C–S–H; red CH; yellow 
CaCO3) (reproduced with permission from [125]). (C) Molecular dynamic simulation for the outer membrane of Gram-negative bacteria (reproduced with permission 
from [126]). (D) Bacterial growth as biofilm under limited oxygen conditions, as it may develop inside a cement crack: blue spheres are bacteria, cyan spheres are 
inert particles, and grey spheres are extracellular polymeric substances secreted by bacteria (reproduced with permission from [127]). (E) Pore-scale distributions of 
the biofilm volume fraction in a packed sand porous media used to simulate MICP (reproduced with permission from [128]). (F) Simulation of a crack plane in the 
centre of a concrete beam with a contour of the crack width. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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presented in the previous section 5.2. Such a combination has indeed 
been recently proposed for BBSHC as part of the EPSRC project EP/ 
S013997/1 Engineering Microbial-Induced Carbonate Precipitation via 
meso-Scale Simulations [154], where that Kinetic Monte Carlo was used 
for the mineral and IbM for bacteria. Mesoscale simulations will likely 
be computationally expensive but may allow testing a wide combination 
of cement chemistries and bacterial metabolisms before experimenta
tion, moving the BBSHC from being mostly lab driven to a cycle of 
design-build-test-learn as used now in Synthetic Biology [155]. 

6.4. Models at the macroscale 

Modelling MICP at the macro scale requires the selection of a 
reasonable model-domain size, initial and boundary conditions, and 
determining the initial distribution of porosity and permeability [156]. 

Nassar et al [157] aimed to predict MICP under controlled conditions 
in a metre-scale tank with transient nonuniform transport in a natural 

soil, using independently determined parameters. The governing equa
tions for the multicomponent reactive transport model were solved with 
an established simulator (PHT3D; [158]). They have concluded that a 
simplified bacterial growth, with the microbes considered exclusively 
sessile and with constant activity, will give a good representation of the 
process leading to nonuniform calcite precipitation. However, Minto 
et al. [159] have showed that, in the systems where there is a significant 
flow as, for example, in porous systems with multiple injection cycles, it 
is necessary to model the bacterial attachment as a function of fluid 
velocity rather than considering them strictly sessile. Their field-scale 
reactive transport model of MICP [159] captures the key processes of 
bacteria transport and attachment, urea hydrolysis, CaCO3 precipita
tion, and modification to the porous media housing the bacteria (e.g. soil 
or concrete) in terms of porosity and permeability. 

Wijngaarden et al. [160] examined four different reaction models in 
the simulation of MICP in a 5 m column. The results of the simulations 
showed that whilst all four models captured the average final calcite 

Fig. 3. Top: a 2D simulation of biofilm induced calcite precipitation without external flow, ureolysis rate coefficient kurea = 0.2 day− 1. The contour of calcite 
saturation peaks (A) and the contour of calcite volume fraction (B) coincide closely with the biofilm colonies. Bottom: a 2D simulation of biofilm induced calcite 
precipitation with external flow of 10-3 m/s, kurea = 0.2 day− 1. The calcite saturation peaks (C) and the calcite volume fraction (D) coincide with the biofilm region 
but the external flow impacts both. Computation domain size 1 mm by 4 mm. (reproduced with permission from [153]). 

Fig. 4. Pore-scale distribution of biofilm volume fraction (bvf), calcite volume fraction (mvf), pH value, and calcium concentration in the simulation domain 40 mm 
< x < 60 mm. (reproduced with permission from [128]). 
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concentration, there were large variations in the predicted profiles. The 
authors concluded that to better capture the experimentally observed 
behaviour, more advanced models are required. Wang and Nackenhorst 
[161] performed numerical analyses of the coupled mechanisms in 
MICP for soil treatment and showed that the spatial distribution of the 
precipitated calcite is heavily dependent on the bacterial distribution 
and the relation between the reaction rate and mass transport rate. In 
further work, Wang and Nachenhorst [162] extended their model to 
include both the mechanical behaviour of the medium, including the 
increase in stiffness with MICP, and micro-structural effects on the re
action kinetics. The comparison of simulations with experimental data 
showed that the coupled bio-chemo-hydro-mechanical model gave a 
reasonable prediction of the test results. 

Zemskov et al. [50] proposed a simple two dimensional model to 
describe bacterial crack healing. Bacteria and the nutrients (calcium 
lactate) were considered embedded in a clay capsule which breaks at the 
appearance of a crack (Fig. 5). The model considers a circular capsule 
section of radius R broken in two equal parts by a streak of width w 
representing a crack that passes through the centre of the capsule (one 
quarter of the domain is solved due to symmetry; the number of bacteria 
doubles each hour). The simulations showed that the crack is completely 
healed after 72 h, though no details are included on the chemistry of the 
cement side. Previous work of the same research group has reported an 
analytical model to represent the probability that a crack hits an 
encapsulated particle, allowing to estimate combinations of crack 
lengths, capsule size and mean intercapsule distance in order to analyse 
the potential of bacteria to act as a catalysis of the self-healing process 
[51]. Their results showed that a fully random distribution requires the 
placement of fewer capsules compared to a layered random allocation. 
Their work was followed by other models focused on the probability that 
a crack will hit the capsules containing spores/bacteria and their nu
trients [163,164]. A different approach for simulating calcite precipi
tation in a crack considered that only urea was contained in a capsule, 
while bacteria, nutrient and calcium where assumed to exist in the 
concrete matrix and distributed homogeneously [55]. In further work on 
a related theme, Romero Rodríguez and co-workers [165] used a 2D 
lattice model to explore the changes that occur in the interface zone 
around polylactic acid (PLA) capsules containing bacterial spores of 
Bacillus cohnii-related strains and nutrient inorganic salts. The results 
showed that the mechanical properties were lower in the interface zone 
in the self-healing samples than in plain cement-paste specimens but 
that the properties varied greatly depending on the shape of the PLA 
particle. It was concluded that the model would be useful for optimising 
the interface properties for particular damage scenarios. 

Overall, the aim of these models was to give directions for the 
manufacturing of self-healing materials with embedded capsules con
taining the healing agent, but they give little or no consideration to the 
cement chemistry or to the details of the biological component. 

In their work, Xin et al. [166] focused on MICP in discrete cracks and 
the associated regain in mechanical properties in ceramic and cemen
titious materials. The MICP process was modelled as the nucleation of 
calcite crystals around bacteria located on the crack surface, that then 
grow to form pillar-like structures that bridge the crack. The decom
position of urea, production of urease, precipitation of calcite and 
changing concentration of bacteria were considered. The results of the 
bio-chemical model fed into a cohesive zone model that described the 
mechanical damage-healing behaviour. Despite some simplifying as
sumptions made in the bio-chemical model, simulations of a three-point 
bending test showed a good match to experimental data in terms of both 
pillar diameter, area coverage and mechanical regain. 

An important limitation of the existing models is their complexity, 
leading to high computational costs which limit the size of numerical 
simulations and force the authors to simplify them even further in order 
to make them amenable for field-scale application [156,167,168]. Some 
authors argue that small-scale parameters may not be relevant when 
modelling at larger scale [157] and propose the elimination of much of 
the complexity of bacterial growth. However, oversimplifying the bac
terial component can lead to unrealistic models which will not be useful 
in design. This highlight the need to construct targeted constitutive laws 
at the relevant REV scales, which is an area whose development for 
MICP in BBSHC is still in its infancy. 

The computational cost associated with such models was investi
gated by Feng et al. [169], who compared the performance of an oper
ator splitting (OS) approach, that splits the problem into two parts, a 
transport step and a reaction step, to a fully coupled globally implicit 
(GI) approach. The authors found that whilst the GI approach was 
computationally more efficient, it also required a greater amount of 
computer storage than the OS approach. In their work, Scheurer et al. 
[170] addressed the issue of model complexity through the application 
of Bayesian model selection (BMS) to the MICP problem. Three models 
of varying complexity were considered and their performance in simu
lating a column experiment was evaluated. The results of the BMS 
revealed that, for this problem, the most comprehensive model was not 
the optimum choice, due to the trade-off between accuracy and model 
complexity (BMS follows the principle of Occam’s razor). 

Models at the crack scale show just one possible approach to develop 
constitutive models for larger-scale analyses. Other approaches exist and 
some have been used to derive constitute equations for self-healing 
concrete, albeit not from MICP, e.g., computational homogenization 
techniques and inverse continuum damage models. The frontier now is 
to leverage these techniques in combination with simulations at the REV 
level, for a bottom-up workflow leading to constitutive laws that capture 
the role of the chemical composition and microstructure of the material. 
This would complete the multi-scale description of BBSHC and provide a 
method to support and enhance the development of such solutions in the 
future. 

6.5. Models using machine learning approaches 

One of the barriers in developing physical, multi-scale simulations of 
MICP and BBSHC lies in the complexity of the processes, which involve a 
large number of species and reactions. The large amount of available 
experimental data addresses how some combinations of materials and 
exposure conditions translate into self-healing behaviours. However, 
reproducing all those scenarios consistently through physical simula
tions is a challenge that is still far from being met. One way to enhance 
the physical simulations and rationalize the large amount of experi
mental data is to take advantage of machine learning (ML) techniques. 
This was attempted first with autogenous healing, with one of the first 
examples being given by Suleiman and Nehdi [171] who have predicted 

Fig. 5. Schematic representation of a crack of width w hitting a capsule section 
of radius R filled with bacteria and nutrients and the computational domain for 
the 2D model (adapted from [50]). Solved for R = 1.5 mm, w = 1 mm. 
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the efficiency of autogenous healing (measured as the closing of the 
initial crack) with artificial neural networks (ANN) and genetic algo
rithms (GA). They have used a database with 1462 data points and 
selected eleven input parameters to train the ANN. The selected pa
rameters encompass the factors controlling self-healing in cementitious 
materials including water to cement ratio, initial crack width and 
healing time. The output of the model was one single neuron repre
senting the final crack width. Their work was followed up by more so
phisticated ML approaches [172] based on a similarly large 
experimental data sets from literature (1417 data points), when six al
gorithms were compared for their ability to predict the autogenous 
healing performance of concrete. A similar example was very recently 
reported by Chen et al. [173], with the difference that they have 
generated their own experimental data. This ensured more uniformity of 
the training data, but the number of data points was smaller. 

ML approaches were further used for evaluating the crack repairing 
capacity of BBSHC. Using a dataset of 1223 cases from literature, 
Zhuang and Zhou [174] have predicted the crack repair based on the 
number of bacteria, the healing time and the initial crack width. Because 
of the scattered experimental results and the lack of data on other var
iables influencing the crack healing, their results have limited applica
bility. However, such approach can be used in concrete design. Another 
interesting approach is to use ML models only for some of the processes 
involved in BBSHC, as recently ANN were considered for modelling the 
contribution of bacterial cells as nucleation centres in MICP [175]. ML 
models can also be employed as ‘surrogates’ for complex or computa
tionally demanding models. Oyebamiji et al. [176] presented a surro
gate model of the IbM presented in [127], based on Gaussian process 
emulation. The aim of the work was to show how microscale processes 
could be considered in macroscale models in a computationally efficient 
way. Once fitting was complete, the authors found that the surrogate 
model was around 220 times more efficient in terms of computational 
cost than the IbM. Scheurer et al. [170] employed surrogate models 
based on arbitrary polynomial chaos expansion in their BMS to reduce 
the computational demand and therefore ensure the feasibility of their 
analysis. 

These pioneer papers for prediction of self-healing performance of 
concrete based on ML show that multiple algorithms would need to be 
used to cross-validate the calculations and that extensive data sets are 
needed for a robust model. Such models can put the numerous experi
mental data at good use and help reconcile the apparently contradictory 
results. Moreover, advancement in ML should encourage the researchers 
to add their experimental results in centralized databases, similar to the 
ones used for genome and protein sequencing. Such a database would 
undoubtedly help with data-sharing and save significant time for indi
vidually screening the hundreds of experiments reported in literature. 

7. Future perspectives/conclusion 

So far, the biological self-healing of materials has brought a lot of 
optimism, but limited engineering progress was made in this area. If we 
want to understand and predict the true limits of this process, we will 
need effective, reliable, and detailed models to complement experi
mentation and practice at larger scales. A mathematical/design tool able 
to capture the main characteristics of the process and simulate the 
different conditions developed in the cement matrix is essential for 
making rapid progress in this area. The current macroscale models of 
BBSHC are informed at the constitutive level by simple models, typically 
at the single-crack level, which oversimplify the MICP process. The field 
however is now mature for individual based simulations of bacteria and 
cement minerals to be combined into more detailed and predictive 
simulations of coupled processes in MICP at the REV level. While the 
coupling is possible already, more progress is needed both on the min
eral and on the biological simulations side to address the complexity of 
the processes at play. Molecular dynamics can help providing funda
mental quantities informing the mesoscale simulations, especially on the 

interactions at the interface between the biological and mineral com
ponents, e.g. during CaCO3 nucleation and growth. Finally, the hand
shake between experiments and simulations will be challenging and 
machine learning techniques could help. Ideally, the emerging field of 
BBSHC will be able to borrow the design-build-test-learn approach for 
engineering problem solving used in Synthetic Biology, at least in the 
initial development phases. 
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