This paper proposes an integral formulation for calculating the magnetic and ohmic losses in rectangular wires immersed in an external 3D magneto-quasi-static field. The formulation is based on some simplifying assumptions that allow to employ a collocation method with constant elements for the discretization, reducing the computational burden. Even if the assumptions introduce an approximation, for the application at hand the numerical tests have shown that the accuracy is still acceptable. Moreover, the computational time is drastically reduced with respect to other approaches based on the finite element method.
An Integral Formulation for Rectangular Wires in a 3D Magneto-Quasi-Static Field
P. Cambareri;L. Di Rienzo;C. de Falco
2023-01-01
Abstract
This paper proposes an integral formulation for calculating the magnetic and ohmic losses in rectangular wires immersed in an external 3D magneto-quasi-static field. The formulation is based on some simplifying assumptions that allow to employ a collocation method with constant elements for the discretization, reducing the computational burden. Even if the assumptions introduce an approximation, for the application at hand the numerical tests have shown that the accuracy is still acceptable. Moreover, the computational time is drastically reduced with respect to other approaches based on the finite element method.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2023_IEEE_Access_Cambareri_Bechis_de_Falco.pdf
accesso aperto
:
Publisher’s version
Dimensione
2.49 MB
Formato
Adobe PDF
|
2.49 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.