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ABSTRACT This paper proposes an integral formulation for calculating the magnetic and ohmic losses
in rectangular wires immersed in an external 3D magneto-quasi-static field. The formulation is based on
some simplifying assumptions that allow to employ a collocation method with constant elements for the
discretization, reducing the computational burden. Even if the assumptions introduce an approximation,
for the application at hand the numerical tests have shown that the accuracy is still acceptable. Moreover,
the computational time is drastically reduced with respect to other approaches based on the finite element
method.

INDEX TERMS Integral equation formulations, rectangular wires, collocation method, eddy currents.

I. INTRODUCTION
Rectangular wires are widely utilized in electrical systems,
e.g. for coils in transformers and rotating machines [1], [2],
or for mechanical armours in submarine power cables [3].
Depending on the application, such wires can be purely con-
ductive or both conductive and ferromagnetic. An accurate
numerical simulation of the electromagnetic behaviour of
these wires is required to calculate the power losses due to
induced eddy currents and to magnetic hysteresis [4].

Traditional formulations based on the finite element
method (FEM) suffer from a high number of degrees of
freedom, that leads to a large demand of memory and
computation time. To face these limitations integral equation
formulations come in useful. By reducing the computational
geometry solely to the wires themselves, without the need
of discretizing the remaining volume as in FEM, they
significantly reduce the computational burden by requiring
less degrees of freedom.

This paper presents such an integral equation formulation
for the calculation of eddy currents and hysteresis losses in
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rectangular wires. The formulation is based on simplifying
assumptions that limit the accuracy to a level still acceptable
for some applications, and allows for an efficient solution of
the problem.

Section II presents the magnetostatic integral formulation
for a single wire, which is then discretized in section III.
Section IV addresses a specific technical aspect of the
presented formulation, which is particularly delicate. Section
V presents the validation of the magnetostatic formulation
derived in the previous sections. Section VI extends the
presented formulation to the time-harmonic regime and
section VII presents its numerical validation. Eventually,
sectionVIII discusses the application of the presentedmethod
to the case of armoured AC submarine cables.

II. MAGNETOSTATIC INTEGRAL FORMULATION FOR A
SINGLE WIRE
The present formulation is derived starting from the work
developed in [7], [4], [5] and [6], which focused on wires
of circular cross-section, and it was based, in turn, on the
work in [8] and [9]. In the presence of a wire with relative
magnetic permeability µr , the three-dimensional space can
be partitioned into �M , which is the domain occupied by
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the wire, and �0, which is the remaining part, namely air.
Under the influence of an external, known magnetostatic flux
densityB0 the wire is magnetized with magnetizationM. The
field, BM , due to such a magnetization is retrieved from the
well-known Biot-Savart formula [10]

BM =
µ0

4π

∫
�M

(
∇ × M

)
(x′) ×

x − x′

|x − x′|3
d3x ′

+
µ0

4π

∫
∂�M

(
n × [[M]]

)
(x′) ×

x − x′

|x − x′|3
d2x ′, (1)

where [[M]] is the jump discontinuity of the magnetization
across boundary ∂�M caused by the different permeabilities
of wire, µ0µr , and air, µ0 [5]. Being B = B0 + BM the
total magnetic flux density in the wire, the relation between
magnetization and magnetic flux density is given by

M(x) = B(x)/µ0 − H(x)

= B(x)/µ0 − B(x)/(µ0µr )

=
κ

µ0

(
B0(x) + BM (x)

)
x ∈ �M , (2)

with κ = 1 − 1/µr .

III. DISCRETIZATION
The magnetostatic formulation developed in [4], [5], [6],
and [7] considered the magnetization to be uniform over the
round wire cross-section. It can be shown analytically that
this is indeed the case for infinitely long, straight round wires,
provided that the external field B0 is uniform, [4], [10], [11].
In particular, the wire domain was discretized into n cylinders
and a piecewise constant approximation for themagnetization
was adopted,

M(x) =

n∑
i=1

M(i)
1
(i)(x), (3)

where 1
(i) was the indicator function of the i-th cylinder

and M(i) was the magnetization in that cylinder. The same
approachwill be followed here for rectangular wires, however
it should be noted that the magnetization is not uniform in
this case: the proposed method then is characterized by an
intrinsic modelling error that will be discussed later in the
paper.

In order to apply the collocation method with constant
elements the wire is discretized into rectangular cuboids with
thickness d , width w and height h, as shown by Fig. 1.
The geometric centre of each cuboid will be indicated as
x(i) ∈ �M , being i ∈ N an index to identify the cuboid.
Point x(i) is the collocation point where the supposed uniform
magnetization is considered. In each collocation point a local
frame of reference e(i)1 , e(i)2 and e(i)3 is placed. The face of each
cuboid perpendicular to the local direction e(i)3 is referred to as
the cross-section, S, and its area is given by |S| = S = w · d .
For the later extension of the formulation to the AC case,

section VI, it is convenient to formulate the discretized

FIGURE 1. Rectangular wire discretization. Collocation point xi is the
origin for the local coordinate system e(i )

1 , e(i )
2 and e(i )

3 .

problem in terms of the magnetic moment per unit length,

m =

∫
S
M(x′)d2x ′. (4)

Under the assumption of uniformity and being M(i)
=

M(x(i)), it follows that

m(i)
= M(i)S. (5)

The reason for this choice, that was already made in [4], [5],
and [6], will be clear later in the paper, when the formulation
will be extended to the time-harmonic case.

The next step is the discretization of (2). Applying (2) in
x(i), multiplying by S and then using (5) yields

m(i)
=
κS
µ0

(
B(i)
0 + B(i)

M

)
, (6)

where B(i)
0 = B0(x(i)) and B(i)

M = BM (x(i)). Term B(i)
M is

calculated with equation (1), where the first integral involving
∇×M vanishes because of the uniformmagnetization in each
cuboid. As for the second integral, we note first of all that [5]

[[M]] = M0 − M, (7)

being M0 the magnetization in �0. Knowing that there is no
magnetization in air, i.e.M0 = 0, we obtain, using (5),

[[M]](x(i)) = −
m(i)

S
. (8)

Indicating with�(i)
M the domain of each cuboid and with ∂�(i)

M
its boundary, the final discretized form of (1) is

B(i)
M =

n∑
j=1

−
µ0

4π

∫
∂�

(j)
M

(
n(x′) ×

m(j)

S

)
×

x(i) − x′

|x(i) − x′|3
d2x ′,

(9)

where it is assumed that the wire is discretized into n cuboids.
Vectorm(j) can be written in its local coordinate system as

m(j)
=

3∑
k=1

m(j)
k e(j)k . (10)
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Hence, substituting (10) into (9), and after defining

a(i,j)k = −
µ0

4π

∫
∂�

(j)
M

n(x′) ×
e(j)k
S

×
x(i) − x′

|x(i) − x′|3
d2x ′,

(11)

equation (9) becomes

B(i)
M =

n∑
j=1

3∑
k=1

a(i,j)k m(j)
k . (12)

This last equation can be written in a more convenient manner
as

B(i)
M =

n∑
j=1

A(i,j)m(j), (13)

where A(i,j) ∈ R3×3 is given by

A(i,j) =

[
a(i,j)1 a(i,j)2 a(i,j)3

]
. (14)

The substitution of (13) into (6), and the application of the
resulting relationship to each collocation point, yields the
linear system of equations(

I −
κS
µ0

A
)
u =

κS
µ0

b, (15)

where I ∈ R3n×3n is the identity, whereas

A =


A(1,1) . . . A(1,n)
...

. . .
...

A(n,1) . . . A(n,n)

 , (16)

and

u =


m(1)

...

m(n)

 , b =


B(1)
0
...

B(n)
0

 . (17)

IV. SELF-ELEMENT CALCULATION
Sub-matrices A(i,i) in (16) are called ‘‘self-elements,’’ and in
their calculation the assumption of uniform magnetization is
too restrictive so that (11) cannot be used. The self-element
calculation should then be addressed by applying a unitary
magnetic moment in point x(i) of Fig. 1 and by calculating the
resulting magnetic flux density in the corresponding cuboid.
However, this section illustrates an alternative approach that
reduces the problem to only two dimensions, reducing the
computational complexity.

To tackle the problem, let us focus on the simplified
configuration of a straight and infinitely long wire, shown by
Fig. 2. Referring to this case study is not restrictive, as the
final goal is to calculate the self-element of a single cuboid,
which is independent from the position of the remaining
ones. Note also that in this case there is a common local
reference frame to all collocation points, namely e1, e2 and

FIGURE 2. Infinite straight wire discretization. In this case there is a
common reference frame e1, e2 and e3 to all collocation points.

e3. If the wire is infinite then the number of collocation points
is infinite as well, hence equation (13) is rewritten as

B(i)
M =

∑
j∈Z

A(i,j)m(j)
∀i ∈ Z. (18)

Now let us introduce a new assumption, i.e. that the
externally imposed magnetic field is uniform and directed
along one of the canonical directions ek . More precisely,
we impose that

B(i)
0 = µ0H0ek ∀i ∈ Z, (19)

where H0 is an arbitrary magnetic field and can be trivially
set equal to 1A/m. Again this is not restrictive, as the
self-element is independent from the external field. This
assumption implies that the magnetization is the same along
the entire wire, therefore m(j)

= m(i), ∀i, j ∈ Z. Thus, taking
i = 0 as the index of the reference collocation point, we can
write

B(0)
M =

A(0,0) +

∑
j∈Z\{0}

A(0,j)

m = (As + Ae)m,

(20)

wherem(j)
= m, ∀j ∈ Z, As = A(0,0) is the self-element and

Ae =

∑
j∈Z\{0}

A(0,j) (21)

is the total contribution of the other elements.
The remaining part of the discussion relies on two

fundamental properties of As and Ae. First of all, Ae must be
finite, which is not automatically guaranteed as it is obtained
from an infinite series. Second, both As and Ae must be
diagonal matrices. In order to keep the current discussion
simple and linear, the proof of these important properties has
been postponed to Appendix A.

Using (19) and (20) system (15) for the infinite straight
wire becomes(

I −
κS
µ0

(As + Ae)
)
m = κS

H0
H0
H0

 . (22)

Let now mk be the k-th component of m, and αkk and βkk be
the non-zero diagonal coefficients of As and Ae, respectively.
Note that βkk can be obtained from (21), (14) and (11). The
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above linear system written on the k-th component, then,
gives (

1 −
κS
µ0

(
αkk + βkk

))
mk = κSH0. (23)

An infinite straight wire geometry in a uniform magnetic
field is a two-dimensional problem. Since the magnetization
does not change along the axial direction, e3: the problem
can be studied on the wire cross-section. The value of the mk
in (23) then can be obtained by solving a two-dimensional
boundary value problem using, for example, finite elements.
Once mk is known, the self-element coefficients αkk can be
calculated as

αkk =
µ0

κS

(
1 −

κSH0

mk

)
− βkk . (24)

It can be verified that when the external field is directed
along e3, which is the direction orthogonal to the wire cross-
section, both the H and B fields are uniform, in particular
H = H0e3 (see Appendix A). Therefore, in the wire,

M =
B
µ0

− H0e3 =
(
µr − 1

)
H0e3, (25)

since B = µ0µrH0e3, thus

m3 =
(
µr − 1

)
SH0. (26)

Substituting (26) into (24) yields, after few manipulations,

α33 =
µ0

S
− β33. (27)

V. NUMERICAL VALIDATION OF THE MAGNETOSTATIC
FORMULATION
To validate the presented magnetostatic formulation we
consider the geometric configurations depicted in Fig. 3.
In configuration (a) two parallel infinite wires are separated
by a distance 1x2 along the e2-direction, whereas in
configuration (b) they are separated by 1x1 along the
e1-direction. An external uniform magnetic field, H0 =

1ek , k = 1, 2, is applied, and the magnetic moment
per unit length in the wires, m, is computed first from a
two-dimensional boundary value problem solved using FEM
(the reference solution), and with an implementation of the
proposed formulation using the periodic boundary conditions
to simulate an infinitely long wire. For symmetry reasons
the magnetization, and thus the magnetic moment, are the
same in both wires. The relative permeability of the wires
is µr = 300, and the geometric sizes are w = 12mm and
d = 3mm.
Fig. 4 and Fig. 5 show the relative error, defined as

err =

∣∣∣ |m(r)
| − |m(p)

|

∣∣∣
|m(r)|

, (28)

where m(r) is the reference value calculated using FEM,
whereasm(p) is obtained using the proposed formulation. The
horizontal axes in Fig. 4 and Fig. 5 are normalized: in Fig. 4
distance 1x2 is normalized with respect to the thickness,

FIGURE 3. Geometric configurations for the validation of the
magnetostatic formulation.

FIGURE 4. Relative error of the magnetostatic test (a).

FIGURE 5. Relative error of the magnetostatic test (b).

d , of the wire, whereas in Fig. 5 1x1 is normalized with
respect to the wire width, w. In test (a) the error is always
below 5%, in test (b) it stays permanently below 5% when
1x1/w ≳ 0.16.

VI. TIME-HARMONIC FORMULATION FOR A SINGLE
WIRE
In time-harmonic conditions it is possible to follow the
same approach of [5] and [6], which allows to exploit the
magnetostatic formulation presented in section II upon, first
of all, defining

mM =

∫
S
M
(
x′
)
d2x ′, (29)
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FIGURE 6. Distribution of Meq(x) = M(x) +
1
2 x × J(x) over the cross-section of a rectangular wire at 50 Hz,

w = 12 mm and d = 3 mm. The real and imaginary parts of component Meq
k are shown when the external

field is directed along ek .

and

mJ =
1
2

∫
S
x′

× J
(
x′
)
d2x ′, (30)

where J is the zero-mean eddy current density induced in
the wire cross-section. The total magnetic moment is then
intended as

m = mM + mJ . (31)

It must be observed that all quantities in these and subsequent
equations are complex-valued vector fields, i.e., phasors. The
same symbols of the magnetostatic formulation are used for
the sake of simplicity.

With definition (31) the same formalism of section III for
the discretization can be adopted. Therefore, let us apply a
collocation method with constant elements in the wire. In the
i-th cuboid the k-th component of the magnetic moment is
given by

m(i)
k =

κkS
µ0

B(i)k , (32)

where B(i)k is the k-th component of the total field applied in
x(i) and κk = 1 − 1/µk is a complex coefficient. In case of
round wires coefficients κk can be calculated analytically [5],
[8]. With rectangular wires a numerical approach is required.
In particular, by solving a two-dimensional boundary value
problem in the case of an infinite straight wire with an

external magnetic field imposed along direction ek , it is
possible to define

κk =
µ0

S
mk
⟨Bk ⟩

, (33)

where

⟨Bk ⟩ =
1
S

∫
S
Bk
(
x′
)
d2x ′. (34)

The necessity of using (34) stems from the fact that
fields M, J and B are not uniform over the cross-section,
as highlighted for example by Fig. 6. Moreover, FEM
simulations show that when the external field is directed
along ek the components ofm in the orthogonal directions is
negligible (mj̸=k = 0). Therefore, in the time-harmonic case
(6) becomes

m(i)
=

S
µ0

K ′

(
B(i)
0 + B(i)

M

)
, (35)

with

K ′
= diag (κ1, κ2, κ3) . (36)

Therefore, the linear system of equations (15) becomes(
I −

S
µ0

KA
)
u =

S
µ0

Kb, (37)

where K ∈ R3n×3n is a block diagonal matrix with matrices
K ′ on its main diagonal:

K = diag
(
K ′, . . . , K ′

)
. (38)
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FIGURE 7. Frequency characteristic of |µ1|, |µ2|, and |µ3|. At low
frequency all the permeabilities approach the magnetostatic value.

FIGURE 8. Relative error on the magnetic moment magnitude for the time
harmonic test with configuration (a) in Fig. 3.

VII. NUMERICAL VALIDATION OF THE TIME-HARMONIC
FORMULATION
The validation of the time-harmonic formulation goes
through the corresponding tests run for the magnetostatic
formulation (section V), described by Fig. 3, in which
two parallel infinite rectangular wires are immersed in an
external uniform time-harmonic magnetic field. The complex
relative permeability is µr = 300 exp(−jπ/3), the electrical
conductivity is σ = 7.246 · 106 S/m, and the geometric sizes
are those of the magnetostatic test. The tests are run at two
different frequencies, namely 50Hz and 1 kHz. Fig. 7 shows
the behaviour, in frequency, of the relative permeabilities µk .
The results of the tests are shown in Fig. 8 and Fig. 9.
A comparison with the tests of the magnetostatic formula-

tion, Fig. 4 and Fig. 5, highlights that in the magnetostatic
case the error approaches zero when the distance between
wires increases. This occurs because in magnetostatics the
fields’ distributions in the wires approach those of an isolated
wire in a uniform external field, which is the condition in
which the coefficients αkk of the self-element were calculated
in section IV. In the time-harmonic case coefficients κk

FIGURE 9. Relative error on the magnetic moment magnitude time
harmonic test with configuration (b) in Fig. 3.

TABLE 1. Asymptotic errors of the time-harmonic tests. Both tests give,
approximately, the same asymptotic errors.

defined in (33) introduce a modelling error regardless of the
distance between the wires, hence the error does not go to
zero.

Table 1 shows the relative asymptotic errors at 50 Hz and
1 kHz. Such errors are acceptable for the application at hand.

VIII. APPLICATION TO ARMOURED AC SUBMARINE
CABLES
As a final step, the proposed method is applied to the case
study of an armoured AC submarine cable, Fig. 10, where
the mesh of the corresponding cable model is reported.
The cable is constituted by three helically-wounded phase
conductors, each one carrying the nominal current, that
generate a time-harmonic magnetic field: this structure is
similar to the one treated in [4], where round armour wires
have been replaced with rectangular ones. The magnetic field
generated by the phase conductors magnetizes the armour
wires and induces eddy currents. The armour wires follow
an helicoidal path as well, with a different pitch.

The formulation was tested on two different cable models,
whose parameters are summarized in Table 2.
Each model was first solved using FEM with a common

software (COMSOL Multiphysics®), which required a 3D
mesh such as that shown in Fig. 10 for cable model 1,
and a cable 3 times the cross-pitch long, [12]. The solution
through the proposed formulation, on the other hand, requires
a discretization of the armour only, using cuboids with d =

3mm, w = 12mm and h = 12mm. Fig. 11 shows a portion
of the discretized armour for cable model 1. The proposed

VOLUME 11, 2023 109493
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TABLE 2. Parameters of the cables.

TABLE 3. Results of the test on armoured cables.

FIGURE 10. FEM mesh of cable model 1.

formulation exploits the helicoidal symmetries described in
[12] to reduce the computational burden.

In the armour the rectangular wires are spread along a
circle. In order to use the validation results of section VII,
1x1/w (Fig. 3) can be estimated, with the help of Fig. 12, as:

1x1
w

≃
raθ − w

w
=

2πra
Nw

− 1, (39)

where ra is the radius of the armour and N is the number of
armour wires. For cable model 1 such a ratio is 1.4, whereas
for cable model 2 it is 1.2. These values are greater than 1 and
they corresponds to small errors, as it can be seen from Fig. 9.
Table 3 compares the total armour losses obtained from

FEM with those obtained from the proposed integral
formulation. The total losses are calculated by summing the
electric (Joule) and magnetic (hysteresis) losses in each wire.
In particular, the electric and magnetic losses per unit length

FIGURE 11. Armour discretization with 12 mm × 3 mm × 12 mm cuboids
for model cable 1.

FIGURE 12. Sketch of the armour geometry.

are calculated as, [4],

Pr = σ

∫
S

∣∣E∣∣2 dS, (40)

Pm = Re
{
jωµ0µr

} ∫
S

∣∣H∣∣2 dS, (41)

where recall that S is the wire cross-section. The total wire
loss is Pw = Pe + Pm. It was shown in [4] that, due to
the linearity, both E and H are proportional the externally
applied uniformfieldB0. Thus, also themagneticmoment,m,
is proportional to B0. Then, the total loss of each rectangular
wire can be calculated as,

Pw = h
n∑
j=1

3∑
k=1

(
ck,e + ck,m

) ∣∣∣m(j)
k

∣∣∣2 , (42)

where n is the number of cuboids in which the wire is
discretized, h is the height of each cuboid, m(j)

k is the k-th
component of the magnetic moment in the j-th cuboid, cj,e
and cj,m are the loss coefficients for the electric and magnetic
losses, respectively. Such coefficients can be calculated
analytically in the case of a round wire, [4], whereas for a
rectangular wire they are obtained by solving with FEM a 2D
boundary value problem in which the wire is assumed to be
infinitely long. Specifically, coefficients in (42) are calculated
as follows: an external magnetic flux density is applied along
ek , B0 = µ0ek , then the total electric and magnetic losses on
the cross-section, pe,k and pm,k respectively, are computed,
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and finally ck,e and ck,m are obtained as

ck,e =
pe,k
|mk |2

and ck,m =
pm,k
|mk |2

, (43)

where mk is the k-th component of the magnetic moment.
From Table 3 it can be observed that the errors are

below 7 % which, considering the approximations behind the
proposed formulation, can be considered as an acceptable
result. Moreover, the computational time required by the
proposed formulation, in which the calculation is efficiently
handled exploiting the helicoidal symmetries described in
[12], is about 8 s, whereas the FEM calculation requires
between 4 h 45 min and 6 h 50 min, depending on the cable
model.

IX. CONCLUSION
This paper proposes an integral formulation for the cal-
culation of power losses in rectangular wires. First, the
formulation is treated in themagnetostatic limit. Amethod for
calculating the self-element by avoiding the solution of a 3D
boundary value problem is proposed. Then the formulation is
extended to the time-harmonic case. The numerical tests in
both the magnetostatic and time-harmonic conditions show
that the accuracy increases as the distance between the
wires increases. A final test on armoured AC submarine
power cables shows that the proposed method is sufficiently
accurate in the calculation of the armour losses, and it
significantly reduces the computational time with respect to
FEM.

The presented formulation has been tested on two geomet-
ric structures: infinitely straight wires and helically-wrapped
wires. Another interesting case would be that of planar
structures, such as those found in planar transformers [13].
In this case, however, the formulation should be modified
in order to take into account the non-zero mean currents
that flow in the windings. The presented formulation for
rectangular wires could be then extended as done in [6] for
round wires.

APPENDIX A
PROPERTIES OF AS AND AE
The self-element calculation detailed in section IV relies on
the fact that the infinite series defining Ae is convergent, and
that both Ae and As are diagonal matrices.

A. PROOF OF THE CONVERGENCE
Matrix Ae is given by the infinite series in (21). To prove
its convergence, recalling (14) and letting v(x′) = (x(0) −

x′)/|x(0) − x′
|, the integral in (11) can be rewritten, for

i = 0 and k = 1, 2, 3, as

a(0,j)k = −
µ0

4π

∫
∂�

(j)
M

(
n(x′) ×

ek
S

)
×

v(x′)
|x(0) − x′|2

d2x ′.

(44)

FIGURE 13. Side view of the infinite straight wire to explain the
inequality in (45).

Given that (see Fig. 13)

|x(0) − x′
| ≥

(
|j| −

1
2

)
h for j ̸= 0, (45)

the series’ terms can be bounded as∣∣∣a(0,j)k

∣∣∣ ≤
µ0/(4π )(

|j| −
1
2

)2
h2

∫
∂�

(j)
M

∣∣∣∣∣
(
n(x′) ×

ek
S

)
× v(x′)

∣∣∣∣∣ d2x ′

≤
c(

|j| −
1
2

)2 , (46)

because the integral is finite. From (46) it follows that, for
k = 1, 2, 3,∣∣∣∣∣∣

∑
j∈Z\{0}

a(0,j)k

∣∣∣∣∣∣ ≤

∑
j∈Z\{0}

∣∣∣a(0,j)k

∣∣∣ ≤

∑
j∈Z\{0}

c(
|j| −

1
2

)2 . (47)

Since c/(|j| − 1/2)2 ∼ c/j2 the last series converges, hence
Ae is finite.

B. PROOF THAT AE IS DIAGONAL
The columns of matrices A(0,j) that contribute to Ae through
the infinite series (21) are given by (44). MatrixAe is diagonal
if and only if, for k = 1, 2, 3, its k-th columns is a vector
parallel to ek . To state this fact properly, let

Ae = [a1 a2 a3] , (48)

with the k-th column vector given by

ak =

∑
j∈Z\{0}

a(0,j)k . (49)

Evidently, in order for Ae to be diagonal the following
relationship must hold:

ak ∥ ek (i.e., ak × ek = 0) ∀k = 1, 2, 3. (50)

The objective then is to prove this last statement.
Before tackling the general proof it is worth going through

some observations. The argument relies on the properties of
the integrand function

ψk (x
′) =

(
n(x′) × ek

)
×

v(x′)
|x(0) − x′|2

, (51)

where the cross-section area, S, has been omitted since it
does not affect the behaviour of ψk (x

′). From Fig. 14 it is
immediate to see that the normal versor, n(x′), is always
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FIGURE 14. Faces of the rectangular cuboid with their corresponding
normal versors.

parallel to one of the ek . In particular, the product n(x′) × ek
can take the following non-null forms:

± e3 × e1 = ± e2, (52)

± e2 × e1 = ∓ e3, (53)

± e1 × e2 = ± e3, (54)

± e3 × e2 = ∓ e1, (55)

± e2 × e3 = ± e1, (56)

± e1 × e3 = ∓ e2. (57)

The above relationships can be written in a more compact
way. Let m, k, p ∈ {1, 2, 3} such that m ̸= k ̸= p, and let
n(x′) = em, then

em × ek = (−1)λmk ep, (58)

where we defined the following map:

λmk =

{
0 if (m+ 1)mod 3 = k,
1 if (k + 1)mod 3 = m.

(59)

Map λmk has some simple properties that will be useful later.
For α, β, γ ∈ {1, 2, 3} such that α ̸= β ̸= γ ,

λαβ + λβα = 1, (60)

λαβ + λαγ = 1. (61)

Looking back at (51), the result of the first cross product
is then multiplied by v(x′). Let, for example, be m = 1 and
k = 3, and let v(x′) = v1e1 + v2e2 + v3e3. It follows from
(58) that

(e1 × e3) × v(x′) = −e2 × v(x′) = −v3e1 + v1e3, (62)

(−e1 × e3) × v(x′) = e2 × v(x′) = v3e1 − v1e3. (63)

Referring to Fig. 15, −e2 × v(x′) corresponds to a projection
of v(x′) on a plane perpendicular to e2, followed by a rotation
of +π/2 around e2 itself. In Fig. 15 vector va is rotated by
+pi/2. On the contrary, −e2×v(x′) corresponds to a rotation
of −π/2 around e2. In Fig. 15 vector vb is the reflection of va
with respect to axis s (thus |vb| = |va|), and it is rotated by
−π/2 around e2. It is important to note that the sum −e2 ×

va+e2×vb results in a vector parallel to e3, which is the versor
corresponding to the initial choice of k in this example.
The above example suggests the presence of geometric

symmetries in the infinite straight wire. Fig. 16 shows the
three symmetry planes 51, 52, and 53, such that 5m ⊥ em,

FIGURE 15. Examples of rotations described by equations (63) and (63).

that intersect each other in x(0). In the following, being w ∈

R3 a vector with its origin in x(0), we will indicate with ρk (w)
the reflection of w with respect 5k .

At this point we are ready to present a formal proof of (50).
Let m, k, p ∈ {1, 2, 3} such that m ̸= k ̸= p, and let t,u, s ∈

R3. We define, being w ∈ R3,

φw(t,u, s) = (w · em)t + (w · ek )u + (w · ep)s. (64)

In particular,

w = φw(em, ek , ep), (65)

and its reflection with respect to5m is

ρm(w) = φw(−em, ek , ep). (66)

Choosing now x(0) as the origin of the reference frame, letting
n(x′) = em and using (58) and (65), we have

ψk (x
′) = (em × ek ) ×

v(x′)
|x′|2

= (−1)λmk ep ×
φv(x′)(em, ek , ep)

|x′|2

= (−1)λmk
φv(x′)

(
ep × em, ep × ek , ep × ep

)
|x′|2

= (−1)λmk
φv(x′)

(
(−1)λpm ek , (−1)λpk em, 0

)
|x′|2

(67)

Note that the case n(x′) = −em must also be taken into
consideration, and it leads to a simple reversal of the resulting
vector, i.e. −ψk (x

′). From property (61) it follows that if
λpm = 1 then λpk = 0, or vice versa, hence

φv(x′)

(
(−1)λpm ek , (−1)λpk em, 0

)
=

{
φv(x′)(−ek , em, 0) if λpm = 1, λpk = 0,
φv(x′)( ek ,−em, 0) if λpm = 0, λpk = 1.

(68)

In either case, the result of (68) is a rotation of ±π/2 around
ep, as shown by Fig. 17. Term (−1)λmk in (68) has the role of
reversing the rotations when λmk = 1, but it does not affect
the nature of the transformation.
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FIGURE 16. Symmetry planes for the infinite straight wire configuration.

Using the definition of ψk (x
′), (51), the k-th column of Ae,

defined in (49), can be written as

ak = −
µ0

4πS
∑

j∈Z\{0}

∫
∂�

(j)
M

ψk (x
′)d2x ′ (69)

Boundary ∂�(j)
M on which the integration is performed can be

split into the six faces of the cuboid depicted in Fig. 18:

∂�
(j)
M =

3⋃
m=1

6(j)
m ∪6

(j)
−m, (70)

where the normal to 6(j)
±m is ±em. In this way (69) can be

rewritten as

ak = −
µ0

4πS
∑

j∈Z\{0}

3∑
m=1

∫
6

(j)
m

ψk (x
′)d2x ′

−

∫
6

(j)
−m

ψk (y
′)d2y′, (71)

where we used the fact that on 6(j)
−m the normal is −em and

thus the integrand is given by −ψk (y
′). The integrals in the

last expression can be rewritten in a simpler way by exploiting
the symmetry planes in Fig. 16. The idea is to exploit suitable
reflections that can be visualized with the help of Fig. 19. Two
situations can be distinguished:

m = 1, 2, t ∈ 6
(j)
−m H⇒ ∃u ∈ 6(j)

m | t = ρm(u), (72)

m = 3, t ∈ 6
(j)
±3 H⇒ ∃u ∈ 6

(−j)
∓3 | t = ρ3(u). (73)

From (72) it follows that, ∀j ∈ Z \ {0},

2∑
m=1

∫
6

(j)
m

ψk (x
′)d2x ′

−

∫
6

(j)
−m

ψk (y
′)d2y′

=

2∑
m=1

∫
6

(j)
m

[
ψk (x

′) − ψk (ρm(x
′))
]
d2x ′. (74)

FIGURE 17. Rotations around ek on the plane identified by em and ek .
Vector φv(em,ek ,0) is the projection of v(x′) on the plane.

The case of (73) requires to consider the terms related to j and
−j in order to exploit the symmetry. In particular, ∀j ∈ Z\{0},∫

6
(j)
3

ψk (x
′)d2x ′

−

∫
6

(j)
−3

ψk (x
′)d2x ′

+

∫
6

(−j)
3

ψk (x
′)d2x ′

−

∫
6

(−j)
−3

ψk (x
′)d2x ′

=

∫
6

(j)
3

[
ψk (x

′) − ψk (ρ3(x
′))
]
d2x ′

−

∫
6

(−j)
3

[
ψk (x

′) − ψk (ρ3(x
′))
]
d2x ′. (75)

It is important to observe that the operations in (75) require a
permutation of the series terms. The fact that the final result
of the series does not change after such a permutation is
guaranteed by the absolute convergence.
Using (74) and (75) it is possible to rewrite (71) as

ak = −
µ0

4πS
∑

j∈Z\{0}

3∑
m=1

∫
6

(−j)
m

[
ψk (x

′) − ψk (ρm(x
′))
]
d2x ′.

(76)

Using (66) and going through the same steps as in (67), it is
possible to show that

ψk (x
′) = (−1)λmk

φv(x′)

(
− (−1)λpm ek , (−1)λpk em, 0

)
|x′|2

(77)

and this means that

ψk (x
′) − ψk (ρm(x

′)) = (−1)λmk
φv(x′)

(
(−1)λpm 2ek , 0, 0

)
|x′|2

.

(78)

In conclusion,

ψk (x
′) − ψk (ρm(x

′)) ∥ ek H⇒ ak ∥ ek ∀ k = 1, 2, 3,

(79)

hence (50) is demonstrated.
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FIGURE 18. Faces of the cuboid on which the integration is performed.

FIGURE 19. Reflections with respect to the symmetry planes (not
indicated here for clarity, refer to Fig. 16). (a) Reflection with respect to
51. (b) Reflection with respect to 52. (c) Reflection with respect to 53.

C. PROOF THAT AS IS DIAGONAL
Matrix As is calculated indirectly from (22), that is rewritten
here for the sake of convenience as(

I −
κS
µ0

(As + Ae)
)
m =

κS
µ0

B0. (80)

The procedure in section IV assumed that when the external
field B0 was uniform and parallel to ek , e.g., B0 = µ0H0ek ,
then the magnetic moment per unit length, m, in the infinite
straight wire was parallel to ek as well. In this way, since Ae
is diagonal it follows that As must be diagonal.

The two-dimensional magnetostatic problem can be stated,
in the wire domain �M , as

∇ × H = 0, (81)

∇ ·
(
µ0µrH

)
= 0. (82)

SinceH is irrotational it admits a scalar potential ψ such that
H = −∇ψ . In particular, ψ satisfies the Laplace equation,
∇

2ψ = 0. Being M = (µr − 1)H the magnetization in the
wire, the magnetic moment per unit length can be written as

m =

∫
S
M d S = −(µr − 1)

∫
S
∇ψ d S, (83)

FIGURE 20. Symmetries when the external field is parallel to e2.
(a) Reference case. (b) Rotation around axis e2. (c) Rotation around axis
e1. (d) Rotation around axis e3.

where in particular for the j-th component ofm it holds

mj = −(µr − 1)
∫
S

∂ψ

∂xj
d S. (84)

Therefore, the statement to be proven is that if the external
magnetic field is H0 = H0ek then all the components of m
except for the k-th must vanish. In turn, based on (84), this
must follow from the properties of ψ .

Let us first consider cases k = 1 and k = 2, that are
formally the same. Let us refer to the latter then: it will
be sufficient to understand the general implications. Case
(a) in Fig. 20 depicts the cross-section of the rectangular
wire immersed in a uniform external field H0 = H0e2.
In particular, point x lies in the third quadrant of the plane.
If the geometry is rotated around axis e2 by 180o, as shown in
case (b) of Fig. 20, point x ends up in ρ1(x). Cases (a) and (b)
are equivalent, in the sense that they have the same geometry,
with the same external field. Being x = x1e1 + x2e2, this
means that

ψ(x) = ψ(x1, x2) = ψ(−x1, x2) = ψ(ρ1(x)), (85)

or in other words that ψ is even with respect to coordinate
x1. Case (c) in Fig. 20 shows a rotation around axis e1, hence
point x of case (a) ends up onto point ρ2(x). This situation is
different, because even though the geometry is still the same,
the external field is reversed with respect to case (a): H0 =

−H0e2. This means that ψ is odd with respect to coordinate
x2:

ψ(x) = ψ(x1, x2) = −ψ(x1,−x2) = −ψ(ρ2(x)). (86)

Using now (84), the even symmetry (85) implies that

m1 = −(µr − 1)
∫ d

2

−
d
2

dx2

∫ w
2

−
w
2

dx1
∂ψ

∂x1

= −(µr − 1)
∫ d

2

−
d
2

dx2

[
ψ

(
w
2
, x2

)
− ψ

(
−
w
2
, x2

)]
= 0. (87)
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On the other hand, the odd symmetry (86) implies

m2 =

∫ w
2

−
w
2

dx1 2ψ
(
x1,

d
2

)
, (88)

which is in general different from zero.The same argument
can be adapted to the case of a field parallel to e1, and brings
to the conclusion that m2 = 0 and m1 ̸= 0.
For the case k = 3, several numerical tests have shown

that the field is always parallel to the external one. In this
situation it can be verified that ψ(x) = −H0x3 is a solution
of the Laplace equation with the external field H0 = H0e3,
which implies that the magnetic field in the wire is uniform:
H = −∇ψ = H0e3. This means that the magnetic moment
in the wire is

m = MS = (µr − 1)HS = (µr − 1)SH0e3. (89)

In conclusion, for a field parallel to ek , the resulting
magnetic momentm is parallel to ek as well. From (80), given
that Ae is diagonal, it follows that As is diagonal.
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