We prove the validity of the p-Brunn-Minkowski inequality for the intrinsic volume V-k, k = 2, ... , n - 1, of symmetric convex bodies in R-n, in a neighbourhood of the unit ball when one of the bodies is the unit ball, for 0 <= p < 1. We also prove that this inequality does not hold true on the entire class of convex bodies of R-n, when p is sufficiently close to 0.

On p-Brunn–Minkowski inequalities for intrinsic volumes, with 0 ≤ p< 1

Bianchini C.;Colesanti A.;Roncoroni A.
2023-01-01

Abstract

We prove the validity of the p-Brunn-Minkowski inequality for the intrinsic volume V-k, k = 2, ... , n - 1, of symmetric convex bodies in R-n, in a neighbourhood of the unit ball when one of the bodies is the unit ball, for 0 <= p < 1. We also prove that this inequality does not hold true on the entire class of convex bodies of R-n, when p is sufficiently close to 0.
2023
File in questo prodotto:
File Dimensione Formato  
11311-1252599_Bianchini.pdf

accesso aperto

: Publisher’s version
Dimensione 470.79 kB
Formato Adobe PDF
470.79 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1252599
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact