This study investigates the bond-slip behavior of micro steel fibers embedded into an Ultra-High-Performance Concrete (UHPC) matrix as affected by the self-healing of the same matrix in different exposure conditions. The UHPC matrix contains a crystalline admixture as a promoter of the autogenous self-healing specially added to enhance the durability in the cracked state. For the aforesaid purpose, some samples were partially pre-damaged with controlled preload (fiber pre-slip at different levels) and subjected to one-month exposure in 3.5% NaCl aqueous solution and in tap water to study the fiber corrosion, if any, and the effects of self-healing; after that, they were subjected to a pull-out test, to be compared with the behavior of analogous non-preslipped samples undergoing the same curing history. Moreover, some samples were cured in the chloride solution, intended to simulate a marine environment, to study the effect of marine curing on the pull-out behavior of steel fiber. The steel fiber corrosion and self-healing products attached to the surface of the steel fiber were analyzed via Scanning Electron Microscopy (SEM), and Energy -Dispersive Spectroscopy (EDS). The results indicate that the newly healed particles formed on the highly damaged fibermatrix interface significantly enhance the friction phase of the bond-slip behavior and result in a significant residual capacity compared to non-preslipped specimens. On the other hand, the self-healing effect in specimens subjected to low damage pre-slip contributed more to the chemical adhesion region of the bond-slip behavior. Owning to the dense microstructure of the matrix, curing in 3.5% NaCl aqueous solution was not found to significantly affect the pull-out resistance as compared to the samples cured in tap water.

Effect of matrix self-healing on the bond-slip behavior of micro steel fibers in ultra-high-performance concrete

Al-Obaidi, Salam;Ferrara, Liberato
2023-01-01

Abstract

This study investigates the bond-slip behavior of micro steel fibers embedded into an Ultra-High-Performance Concrete (UHPC) matrix as affected by the self-healing of the same matrix in different exposure conditions. The UHPC matrix contains a crystalline admixture as a promoter of the autogenous self-healing specially added to enhance the durability in the cracked state. For the aforesaid purpose, some samples were partially pre-damaged with controlled preload (fiber pre-slip at different levels) and subjected to one-month exposure in 3.5% NaCl aqueous solution and in tap water to study the fiber corrosion, if any, and the effects of self-healing; after that, they were subjected to a pull-out test, to be compared with the behavior of analogous non-preslipped samples undergoing the same curing history. Moreover, some samples were cured in the chloride solution, intended to simulate a marine environment, to study the effect of marine curing on the pull-out behavior of steel fiber. The steel fiber corrosion and self-healing products attached to the surface of the steel fiber were analyzed via Scanning Electron Microscopy (SEM), and Energy -Dispersive Spectroscopy (EDS). The results indicate that the newly healed particles formed on the highly damaged fibermatrix interface significantly enhance the friction phase of the bond-slip behavior and result in a significant residual capacity compared to non-preslipped specimens. On the other hand, the self-healing effect in specimens subjected to low damage pre-slip contributed more to the chemical adhesion region of the bond-slip behavior. Owning to the dense microstructure of the matrix, curing in 3.5% NaCl aqueous solution was not found to significantly affect the pull-out resistance as compared to the samples cured in tap water.
2023
Bond-slip behavior of steel fibers, Self-healing, UHPFRC composites, Steel fiber corrosion
File in questo prodotto:
File Dimensione Formato  
MAAS-D-23-00507.pdf

Accesso riservato

Descrizione: Al-Obaidi et al M&S 2023
: Pre-Print (o Pre-Refereeing)
Dimensione 2.62 MB
Formato Adobe PDF
2.62 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1252363
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact