Let Gamma be a discrete countable group and let (Omega, mu) be an ergodic standard Borel probability Gamma-space. Given any non-elementary virtual dendromorphism (that is a measurable cocycle in the automorphism group of a dendrite), we construct a unitary representation V with no invariant vectors such that H-b(2)(Gamma; V) contains a non-zero class. As a consequence, all virtual dendromorphisms of a higher rank lattice must be elementary.
A note on the elementarity of virtual dendro-morphisms of higher rank lattices
Savini A.
2022-01-01
Abstract
Let Gamma be a discrete countable group and let (Omega, mu) be an ergodic standard Borel probability Gamma-space. Given any non-elementary virtual dendromorphism (that is a measurable cocycle in the automorphism group of a dendrite), we construct a unitary representation V with no invariant vectors such that H-b(2)(Gamma; V) contains a non-zero class. As a consequence, all virtual dendromorphisms of a higher rank lattice must be elementary.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
proc16024.pdf
Accesso riservato
:
Publisher’s version
Dimensione
235.42 kB
Formato
Adobe PDF
|
235.42 kB | Adobe PDF | Visualizza/Apri |
|
11311-1250893_Savini.pdf
accesso aperto
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
199.09 kB
Formato
Adobe PDF
|
199.09 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


