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Abstract. Let Γ be a discrete countable group and let (Ω, μ) be an ergodic
standard Borel probability Γ-space. Given any non-elementary virtual dendro-
morphism (that is a measurable cocycle in the automorphism group of a den-
drite), we construct a unitary representation V with no invariant vectors such
that H2

b(Γ;V ) contains a non-zero class. As a consequence, all virtual dendro-
morphisms of a higher rank lattice must be elementary.

1. Introduction

From a dynamical point of view, the most elementary and at the same time
intriguing field of research is the study of group actions on topological spaces of
dimension one. The very first case is given by circle actions, that is representations
of a group Γ in Homeo+(S1), the group of orientation preserving homeomorphisms.
For such actions, orbits are well-understood. Moreover, one can construct a com-
plete invariant for the dynamics of a circle action using the bounded Euler class
eb
Z
∈ H2

b(Homeo+(S1);Z). More precisely, Ghys [Ghy87] proved that two different

circle actions ρ1, ρ2 : Γ → Homeo+(S1) are equivalent (that is, semiconjugated) if
and only if the bounded classes obtained by pulling back eb

Z
are equal. More recently,

Burger and Monod [BM99,BM02] exploited some vanishing results in bounded co-
homology to show that higher rank lattices act elementarily on the circle (see also
[Ghy99] for a different proof).

Remaining in the context of one dimensional topological spaces, one can study
dendrites. Dendrites are continua containing no simple closed curve. Examples of
dendrites are the ends compactification of a countable tree, some Julia sets [BT07]
and the Wazewski’s universal dendrites [Waz23]. Dendrites appear also as canonical
quotients of continua [Why28,Why30].

Monod and Duchesne studied systematically the dynamics of groups acting on
dendrites. In [DM19] they gave several structural properties about the homeomor-
phisms group Homeo(X), when X is a dendrite containing no invariant subdendrite
with respect to Homeo(X). When Γ is a higher rank lattice or a lattice in a product
of connected groups, the authors [DM18] recovered an elementarity result similar
to the one valid for circles actions.

Using the same cohomological approach by Burger and Monod, the author [Sav]
has recently extended Ghys’ Theorem to the context of measurable cocycles. Mea-
surable cocycles can be thought of as distorted actions where the distortion is
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parametrized by a standard Borel probability space. For this reason, since we
are going to talk about measurable cocycles with values into the homeomorphisms
group of a dendrite, we are actually going to talk about virtual dendro-morphism.
The term virtual comes from the notation adopted by Mackey [Mac66].

Assuming that the virtual dendro-morphism is not elementary, that is it does
not admit an invariant family of points or arcs, we are able to extend some results
by Monod and Duchesne in this context. More precisely, we have the following
result

Theorem 1. Let Γ be a countable group and let (Ω, μ) be an ergodic standard Borel
probability Γ-space. Given a non-elementary virtual dendro-morphism σ : Γ×Ω →
Homeo(X), there exists a canonical unitary Γ-representation V without invariant
vectors and such that H2

b(Γ;V ) has a non-zero class.

The unitary representation V constructed above is given by some Bochner space
over the parameter space Ω which determines the distorted action. In this case, the
reader can recognize similar techniques used by the author and Sarti [Sav,SSa] to
define the notion of parametrized class.

An immediate consequence of Theorem 1 is that any virtual dendro-morphism of
an amenable group is elementary. This extends the case of representations, known
thanks to the work by Shi and Ye [SY17].

Using jointly Theorem 1 and the vanishing result by Monod and Shalom [MS04,
Theorem 1.4] we are able to obtain an elementarity theorem

Theorem 2. Let G be a connected almost k-simple algebraic group over a field κ
with rankκ(G) ≥ 2. Let Γ be a lattice in the k-points of G. Any virtual dendro-
morphism of Γ over an ergodic standard Borel probability Γ-space is elementary.

The above theorem should be compared with the ones by Witte-Zimmer [WZ01,
Theorem 5.4], Navas [Nav06, Theorem B] and the author [Sav, Theorem 4].

Plan of the paper. The first section is devoted to the basics about dendrites. In
the second section we introduce virtual actions and we show that non-elementary
ones admit a Furstenberg map. We conclude with the proof of the main theorems.

2. Dendrites

In this section we are going to remind the main properties of dendrites. For a
more detailed discussion about those notions we refer the reader either to [DM18,
Section 2, Section 7] or to [Nad92, Chapter X].

In topology, a continuum is a non-empty connected compact metrizable space.
A continuum X is a dendrite if any two distinct points of X can be separated by a
point. There exist other equivalent ways to define a dendrite. For instance, X is a
dendrite if and only if it is locally connected and contains no simple closed curve.

Any non-empty closed connected set of a dendrite is still a dendrite. Since the
intersection of two connected sets in X remains connected [Nad92, Theorem 10.10],
given a non-empty subset A it makes sense to consider the smallest subdendrite ofX
containing A. We call it dendro-hull of A and we denote it by [A]. In the particular
case when A is the set {x, y} of only two points, we use the notation [x, y] to denote
its dendro-hull. The subdendrite [x, y] is called arc, and we define the interior of
the arc as (x, y) := [x, y] \ {x, y}. Notice that one can give another equivalent
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characterization of dendrites using arcs. Indeed for any two points x, y ∈ X, there
exists a unique arc [x, y] with x, y as extremities.

Since we are going to use it later, recall that given any subdendrite M of X,
there exists a retraction map rM : X → M , which is the identity on M and such
that r(x) is the unique point contained in any arc from x to a point in M , whenever
x ∈ X \M [Nad92, Lemma 10.25, Terminology 10.26].

Let X be a dendrite and consider x ∈ X. Since X is locally connected, the
connected components of the complement X \ {x} are open. The cardinality of
the set of connected components is the (Menger-Urysohn) order of x in X [Kur61,
Section 46, I]. When x has order equal to 1 is called an end point of X. We denote
the subset of ends in X by Ends(X). If the order of x is ≥ 3, then x is a branch
point and we denote by Br(X) the set of branch points. Finally, if the order of x is
equal to 2, we a have a regular point. The set of regular points is dense in X, the
one of end points is not empty and the branch points are countable.

We conclude this short introduction about dendrites recalling the notion of fun-
damental bundle. Let X be a dendrite not reduced to a point. The fundamental
bundle Bund(X) is the collection of pairs of the form (x,C), where x ∈ X and C
is a component of X \ {x}. Since the connected components are countably many,
we can identify the fiber of x to the discrete space π0(X \ {x}). To topologize
Bund(X) one can map it injectively in the product space X × Con(X) with the
map (x,C) �→ (x, {x} ∪ C). The space Con(X) is the set of closed connected
subsets of X endowed with the Vietoris topology (it is metrizable and compact).
With the subspace topology, Bund(X) becomes a locally compact second countable
space.

One can also define the double bundle Bund2(X) over X as the fibered product

of two copies of Bund(X). The bundle Bund2(X) has discrete countable fibers
corresponding to pair of connected components of X \ {x} for any x ∈ X.

We conclude by noticing that Homeo(X) acts on Bund(X) and Bund2(X) by
homeomorphisms and all the projections are equivariant with respect to the
Homeo(X)-actions.

3. Virtual dendro-morphisms

In this section we are going to introduce the notion of virtual dendro-morphism.
The latter will be a distorted group action on a dendrite and the distorsion will
be parametrized by a standard Borel probability space. In the particular case of
non-elementary virtual dendro-morphism we are going to show that there exists a
unique minimal equivariant family of subdendrites. The existence of this minimal
family will allow us to show the existence of a Furstenberg map for a non-elementary
virtual dendro-morphism.

Given a dendrite X, recall that Homeo(X) is the group of homeomorphisms en-
dowed with the compact-open topology. We can define the natural Borel structure
associated to the latter topology, thus we will refer to such measurable structure
when we are going to speak about measurable functions with target in Homeo(X).

Before giving the definition of virtual dendro-morphism, recall that a standard
Borel probability space (Ω, μ) is a Borel space which is measurably isomorphic to
a separable and completely metrizable space. If Γ is a group acting on (Ω, μ) by
preserving the probability measure μ, we are going to refer to (Ω, μ) as a standard
Borel probability Γ-space.
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Definition 3.1. Let Γ be a countable group and let (Ω, μ) be a standard Borel
probability Γ-space. A virtual dendro-morphism (or equivalently a measurable co-
cycle) is a Borel map

σ : Γ× Ω → Homeo(X)

which satisfies

(1) σ(γ1γ2, s) = σ(γ1, γ2.s)σ(γ2, s),

for every γ1, γ2 ∈ Γ and almost every s ∈ Ω.

Virtual dendro-morphisms are an actual generalization of group actions. Indeed
any group action given by a representation ρ : Γ → Homeo(X) can be seen as a
virtual dendro-morphism by defining

σρ : Γ× Ω → Homeo(X), σ(γ, s) := ρ(γ),

for any standard Borel probability Γ-space (Ω, μ). More generally, given a vir-
tual dendro-morphism, one can construct a Γ-action on the product space Ω ×X
determined by σ. Indeed we can define

(2) γ.(s, a) := (γ.s, σ(γ, s)a),

for every γ ∈ Γ, a ∈ X and almost every s ∈ Ω. The cocycle condition given by
Equation (1) implies exactly that Equation (2) is an action.

In this context the word cocycle refers to the fact that a virtual dendro-morphism
is a cocycle in the sense of Feldman and Moore [FM77] associated to the orbital
equivalence relation RΓ of Γ on Ω. Following such interpretation, we can say
that two virtual dendro-morphisms σ1, σ2 : Γ× Ω → Homeo(X) are equivalent (or
cohomologous) if there exists a measurable map f : Ω → Homeo(X) such that

σ2(γ, s) = f(γ.s)−1σ1(γ, s)f(s),

for every γ ∈ Γ and almost every s ∈ Ω. The equivalence between two virtual
dendro-morphisms boils down to the fact that the associated actions on the product
space Ω×X are measurably conjugated by the map (s, a) �→ (s, f(s)(a)).

Among all the possible virtual dendro-morphisms, there is the particular class
of elementary ones. Before introducing them, we need to introduce the set P1,2(X)
of subsets of X containing either only one or two points. Being a closed subset of
CL(X), the set of all closed subsets of X endowed with the Vietoris topology, we
can consider on P1,2(X) the Borel structure coming from the subspace topology.

Definition 3.2. Let Γ be a countable group and let (Ω, μ) be a standard Borel
probability Γ-space. Given a virtual dendro-morphism σ : Γ× Ω → Homeo(X), we
say that a Borel map

ϕ : Ω → CL(X)

is σ-equivariant if it holds

(3) ϕ(γ.s) = σ(γ, s)ϕ(s),

for every γ ∈ Γ and almost every s ∈ Ω.
We say that the virtual dendro-morphism σ is elementary if there exists a σ-

equivariant Borel map ϕ : Ω → P1,2(X).
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In the particular case that σ is an actual morphism with values into Homeo(X), it
is immediate to verify that Definition 3.2 boils down to the definition of elementary
action on a dendrite [DM18, Definition 3.1]. It is easy to verify that elementarity is
a property which is invariant along the cohomology class of a fixed virtual dendro-
morphism. Additionally, we want to remark that, if Ω is a Γ-ergodic space, then
elementarity implies the existence of either an equivariant map ϕ : Ω → X or an
equivariant map ϕ : Ω → P2(X), where the latter is the collection of 2-points
subsets of X.

As for representations [DM18, Proposition 3.2], there exist several characteri-
zations of elementarity for a virtual dendro-morphism σ. A direct application of
[DM18, Proposition 3.3] shows that the elementarity of σ is equivalent to the ex-
istence of a measurable σ-equivariant map μ : Ω → Prob(X), that is μ(γ.s) =
σ(γ, s)∗μ(s). Here Prob(X) is the space of probabilities over X with the weak-∗

topology and σ(γ, s)∗ is the push-forward. Notice that the σ-equivariant map μ is
nothing else that a Γ-fixed point for the affine action on L0(Ω,Prob(X)) defined by

(γ.μ)(s) := σ(γ−1, s)−1
∗ μ(γ−1.s),

for every γ ∈ Γ and almost every s ∈ Ω. Recall that L0(Ω,Prob(X)) is the compact
metrizable space of classes of measurable functions identified when they differ only
on a null measure subset of Ω.

Viewing elementarity as a fixed point property, we can immediately argue that it
can be extended using coamenability. Recall that a subgroup Λ < Γ is coamenable if
any continuous affine Γ-action on a convex compact set has a fixed point whenever
it has a Λ-fixed point. Following the same line of [DM18, Lemma 6.1] we get
Proposition 3.3

Proposition 3.3. Let Γ be a countable group and let Λ < Γ be a coamenable
subgroup. Any virtual dendro-morphism of Γ over a standard Borel probability Γ-
space (Ω, μ) is elementary if and only if its restriction to Λ is elementary.

Proof. We prove only the non-trivial implication. Given a virtual dendro-morphism
σ : Γ × Ω → Homeo(X), suppose that its restriction to Λ × Ω is elementary. This
implies the existence of a Λ-fixed point in L0(Ω,Prob(X)). Since the latter is convex
and compact [BFS, Lemma 7.1.(6)], by coamenability we get a Γ-fixed point. �

In dynamics it is pretty usual to look for minimal invariant subsets for a given
action. In our context we need first to introduce the notion of minimality for
closed-valued maps. We are going to follow Furstenberg [Fur81, Section 3]. Given
σ : Γ× Ω → Homeo(X), a σ-equivariant Borel map

κ : Ω → CL(X)

is minimal if, given any other equivariant Borel map κ′ : Ω → CL(X), we have that

(4) κ(s) ⊆ κ′(s),

for almost every s ∈ Ω. It is worth noticing that Equation (4) defines a partial
order on the set of measurable closed-valued map on Ω. We denote the space of
(equivalence classes) of measurable closed-valued maps by L0(Ω,CL(X)).

Given a minimal map κ for σ, we are going to call the collection {κ(s)}s∈Ω a
minimal family for σ. We are going to prove that for a non-elementary virtual
dendro-morphism there exists a unique minimal family of subdendrites (compare
with [DM18, Lemma 4.1]).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

5000 A. SAVINI

Proposition 3.4. Let Γ be a countable group and let (Ω, μΩ) be an ergodic standard
Borel probability Γ-space. If a virtual dendro-morphism σ : Γ × Ω → Homeo(X) is
not elementary, then there exists a unique (as a class) equivariant minimal family
of subdendrites for σ.

Proof. The existence is a mere consequence of Zorn’s Lemma. The space
L0(Ω,CL(X)) can be metrized using the following distance

d(κ, κ′) :=

∫
Ω

dHaus(k(s), k
′(s))dμ(s),

where dHaus is the Hausdorff distance (notice that X is compact and metrizable,
hence the Hausdorff metric induces the Vietoris topology). Starting from the partial
order defined by Equation (4), we can exploit the compactness of X and apply
Zorn’s Lemma to guarantee the existence of a minimal family K := {Ks}s∈Ω of
closed sets. To get a minimal family of subdendrites we can consider

Ms := [Ks],

for almost every s ∈ Ω. The family M := {Ms}s∈Ω is σ-equivariant by the equiv-
ariance of the family K .

We want to show that the minimal family is unique. By contradiction, suppose
that there exist two minimal equivariant families M = {Ms}s∈Ω, N = {Ns}s∈Ω of
subdendrites. By the ergodicity of the space Ω, the two families M and N must
be disjoint for almost every s ∈ Ω (otherwise they would intersect for almost every
s ∈ Ω leading to an equivariant family of subdendrites strictly contained in both
M and N ).

If we consider the retraction map

rM
s : X → Ms

of Section 2, we can define the point as := rM
s (Ns). The equivariance of the families

M and N and the uniqueness of the rectraction point imply that

aγ.s = σ(γ, s)as,

for every γ ∈ Γ and almost every s ∈ Ω. In this way we obtained an equivariant
measurable map α : Ω → X, α(s) := as, but this is a contradiction to the non-
elementarity assumption. �

Now we need to recall the notion of Γ-boundary for a countable group Γ. We
are going to follow Bader and Furman [BF14, Definition 2.1].

Recall that, given a locally compact second countable group Γ, a Lebesgue Γ-
space is a standard Borel measure space where the Γ-action preserves only the
measure class. Given an equivariant measurable map p : U → V between two
Lebesgue Γ-spaces, a metric along p is a Borel function d : U ×p U → (0,∞)
on the fibered product whose restriction dv to the fiber Uv := p−1(v) determines
a separable metric space. The Γ-action is fiberwise isometric if any γ ∈ Γ acts
isometrically on the fibers of p, that is γ : Uv → Uγ.v is an isometry, and

dγ.v(γ.x, γ.y) = dv(x, y),

for every γ ∈ Γ, v ∈ V, x, y ∈ Uv. A measurable map q : Y → Z between Lebesgue
Γ-spaces is relatively metrically ergodic if for any fiberwise isometric Γ-action along a
map p : U → V and any measurable Γ-equivariant maps f : Y → U and g : Z → V ,
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there exists a Γ-equivariant measurable map ψ : Z → U such that the following
diagram commutes

(5) Y
f ��

q

��

U

p

��
Z

g ��

ψ

��

V.

Definition 3.5 ([BF14, Definition 2.1]). Let Γ be a locally compact second count-
able group. A Γ-boundary is an amenable Lebesgue Γ-space B such that the pro-
jection maps π1 : B ×B → B and π2 : B × B → B on the first and the second
factor, respectively, are both relatively metrically ergodic.

Examples of Γ-boundaries are Furstenberg-Poisson boundaries for locally com-
pact second countable groups [BF14, Theorem 2.7]. In particular, a Γ-boundary for
a lattice Γ in a semisimple Lie group G can be identified with the quotient space
G/P , where P < G is a minimal parabolic subgroup.

Recall that a Γ-boundary is always a strong boundary [BF14, Remarks 2.4.(1)]
in the sense of Burger-Monod [BM02].

We are now ready to introduce the notion of Furstenberg map.

Definition 3.6. Let Γ be a countable group and let (Ω, μ) be a standard Borel
probability Γ-space. Let B be a Γ-boundary. Given a virtual dendro-morphism
σ : Γ× Ω → Homeo(X), we say that a Borel map

φ : B × Ω → CL(X)

is σ-equivariant if it holds

(6) φ(γ.b, γ.s) = σ(γ, s)φ(b, s),

for every γ ∈ Γ and almost every b ∈ B, s ∈ Ω. A Furstenberg map for σ is a Borel
equivariant map φ : B × Ω → X.

Given a Γ-boundary B and an equivariant Borel map φ : B × Ω → CL(X), we
can define the s-slice of the map φ as

φs : B → CL(X), φs(b) := φ(b, s).

By [Mar91, Chapter VII, Lemma 1.3] we have that φs is measurable and by Equa-
tion (6) we obtain that

(7) φγ.s(b) = σ(γ, s)φ(γ−1b),

for every γ ∈ Γ and almost every b ∈ B, s ∈ Ω.
Before proving the existence of a Furstenberg map for a non-elementary virtual

dendro-morphism, we need first to prove the following technical lemma.

Lemma 3.7. Let Γ be a countable group and let Ω be an ergodic standard Borel
probability space. Let B be a Γ-boundary. Given a measurable map

φ : B × Ω → P2(X),

we have that

[φs(b)] ∩ [φs(b
′)] = ∅,

for almost every s ∈ Ω, b, b′ ∈ B.
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Proof. By the Γ-ergodicity on the space B × B × Ω [MS04, Proposition 2.4], we
have that either [φs(b)] ∩ [φs(b

′)] is empty for almost every s ∈ Ω, b, b′ ∈ B or it is
not trivial. Suppose by contradiction that

[φs(b)] ∩ [φs(b
′)] 
= ∅,

for almost every s ∈ Ω, b, b′ ∈ B.
We claim that, for almost every s ∈ Ω, there exists a full measure subset As ⊂ B

such that

[φs(b)] ∩ [φs(b
′)] 
= ∅,

for every b, b′ ∈ As. By Fubini’s Theorem, for almost every s ∈ Ω, there exists a
full measure subset Bs ⊂ B and, given b ∈ Bs, there exists a full measure subset
Bb,s ⊂ B such that

[φs(b)] ∩ [φs(b
′)] 
= ∅,

for every b′ ∈ Bb,s. Now we have two possibilities. If Bs satisfies our claim we are
done. If not, there must exist two points b, c ∈ Bs such that

[φs(b)] ∩ [φs(c)] = ∅.

We can define As := Bb,s ∩ Bc,s. For any b′, c′ ∈ As, by applying [DM18, Lemma
2.2] to the 4-tuple of arcs [φs(b)], [φs(b

′)], [φs(c)], [φs(c
′)], we get that

[φs(b
′)] ∩ [φs(c

′)] 
= ∅,

and the claim is proved.
Thanks to the claim, we can consider the largest set As such that

[φs(b)] ∩ [φs(c)] 
= ∅,

for every b, c ∈ As. Let A := {As}s∈Ω be the collection of such sets. As a
consequence of Equation (7) and by the maximality assumption, we have that A
is Γ-invariant, that is Aγ.s = γAs. For almost every s ∈ Ω, the intersection

Is :=
⋂

b′∈As

[φs(b
′)] 
= ∅

is either an arc or a point. The fact that Is is not empty follows by [DM18, Lemma
2.1]. The ergodicity of Ω implies that Is is a point for almost every s ∈ Ω or is an arc
for almost every s ∈ Ω. Being the family Is equivariant (thanks to the invariance
of A and the equivariance of φ), in both cases we have that σ is elementary and
this is a contradiction. �

We are finally ready to prove the existence of a Furstenberg map for a non-
elementary cocycle.

Theorem 3.8. Let Γ be a countable group and let (Ω, μ) be an ergodic standard
Borel probability Γ-space. Consider a Γ-boundary B. Given a virtual dendro-
morphism σ : Γ × Ω → Homeo(X), if σ is not elementary, then there exists a
Furstenberg map

φ : B × Ω → X.

Additionally, if M = {Ms}s∈Ω is the equivariant minimal family of subdendrites
associated to σ, then for almost every s ∈ Ω the slice φs takes values into the ends
of Ms, that is

φs : B → Ends(Ms).
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Proof. Since σ is not elementary, by Lemma 3.4 there exists a minimal family
M = {Ms}s∈Ω for σ. For almost every b ∈ B, s ∈ Ω, define Vb,s := Prob(Ms)
the space of probabilities on Ms. The collection V := {Vb,s}b∈B,s∈Ω comes with a
natural affine action determined by σ. Since B is amenable, by [Zim84, Proposition
4.3.4] B × Ω is an amenable Γ-space. Thus there exists an equivariant section to
the measurable field V , that is an equivariant map

φ̃ : B × Ω → Prob(X)

such that EssIm(φ̃s) ⊂ Prob(Ms) for almost every s ∈ Ω. Here EssIm(φ̃s) denotes

the essential image of the slice φ̃s. By composing φ̃ with the map given by [DM18,
Proposition 3.3] we obtain a map

φ : B × Ω → P1,2(X).

By the ergodicity of B ×Ω, we have either φ : B × Ω → X or φ : B ×Ω → P2(X).
We want to show that the latter case is impossible.

Suppose by contradiction that we have a map φ : B × Ω → P2(X). By Lemma
3.7 we know that

[φs(b)] ∩ [φs(b
′)] = ∅,

for almost every s ∈ Ω and almost every b, b′ ∈ B. We can define the map

f : B ×B × Ω → Bund(X), f(b, b′, s) = (as(b), Cs(b, b
′)),

where as(b) and Cs(b, b
′) are the unique point and connected component satisfying

as(b) ∈ [φs(b)], φs(b
′) ⊂ Cs(b, b

′), Cs(b, b
′) ∩ φs(b) = ∅.

Notice that we can see f as an element of L0(Ω,Bund(X)). Thus, we can apply
the relative metric ergodicity of the first projection to get a lift in the following
diagram

(8) B ×B ��

��

L0(Ω,Bund(X))

pΩ

��
B ��

��

L0(Ω, X).

To apply correctly relative metric ergodicity, we metrize each fiber of the map pΩ
integrating along Ω the metrics given by the fiberwise metric along p : Bund(X) →
X (possibly renormalizing them to get bounded metrics, see [SS22, Theorem 1]).

The existence of the lift in Diagram (8) implies that the component Cs(b, b
′)

does not actually depend on the point b′, for almost every s ∈ Ω. By the way we
defined the map f , we have that

φs(b
′) ⊂ Cs(b),

for almost every b′ ∈ B. Thus the essential image Es of φs lies in the closure
Cs(b) = Cs(b)∪as(b), for almost every b ∈ B. Notice that Cs(b) can intersect φs(b)
is at most one point.

Exploiting the equivariance of the map φ and the fact that Cs(b) is closed and

connected, the minimality of the family {Ms}s∈Ω implies that Ms ⊂ Cs(b). Denote

by B′ the subset of B where Ms ⊂ Cs(b). If we define

Is :=
⋂
b∈B′

Cs(b),
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we have that Ms ⊂ Is. The latter inclusion leads to a contradiction: in fact
φs(b) ⊂ Ms for almost every b ∈ B, whereas Is ∩ φs(b) is at most one point for
almost every b ∈ B. Thus we get that φ : B×Ω → X such that almost every s-slice
takes values in Ms, being the latter a minimal family.

Now we show that each φs has values into Ends(Ms). Again, by the ergodicity
of the space B ×B × Ω we must have that

φs(b) 
= φs(b
′),

for almost every s ∈ Ω and almost every b, b′ ∈ B (otherwise σ would be elemen-
tary). We define the map

f : B ×B × Ω → Bund(X), f(b, b′, s) = (φs(b), Cs(b, b
′)),

where φs(b
′) ∈ Cs(b, b

′). The same argument based on relative metric ergodicity
shows that Cs(b, b

′) does not depend on b′ for almost every s ∈ Ω. Thus φs(b
′) ∈

Cs(b) for almost every b′ ∈ B and, by minimality, Ms ⊂ Cs(b). Since φs(b) ∈
Ends(Cs(b)) and φs(b) ∈ Ms, we must have φs(b) ∈ Ends(Ms). �

Remark 3.9. Given a minimal family M = {Ms}s∈Ω for a non-elementary virtual
dendro-morphism σ, by Theorem 3.8 we know that the s-slice of the Furstenberg
map takes values inMs. We claim that φ is essentially unique, that is, given another
Furstenberg map ψ, we must have

φ(b, s) = ψ(b, s),

for almost every s ∈ Ω and b ∈ B. Suppose not. By the ergodicity of B × Ω, we
must have

φ(b, s) 
= ψ(b, s),

for almost every s ∈ Ω, b ∈ B. In this way we obtain an equivariant Borel map

B × Ω → P2(X), (b, s) �→ {φs(b), ψs(b)},
which would contradict the proof of Theorem 3.8.

4. The canonical unitary representation of a virtual

dendro-morphism

In this section we are going to prove our main results. Given a virtual dendro-
morphism σ : Γ×Ω → Homeo(X), the main step of the proof will be the construc-
tion of a canonical unitary Γ-representation V without invariant vectors such that
H2

b(Γ;V ) contains a non-trivial class. Before giving the details of such construction,
we need to recall the cocycle introduced by Monod and Duchesne [DM18, Section
9].

Let X be a dendrite. Given two points p, q ∈ X, we define a Borel function on
Bund2(X) as follows

(9) α(p, q)(a, C,C ′) :=

⎧⎪⎨
⎪⎩

1 if p ∈ C, q ∈ C ′ and C 
= C ′,

-1 if p ∈ C ′, q ∈ C and C 
= C ′,

0 otherwise.

Recall that C,C ′ are two connected components of X \ {a}. As noticed by
Duchesne and Monod, the function α is alternating in both (p, q) and (C,C ′), it
remains unchanged by the action of the group Homeo(X) and it is non-zero when
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the point a lies in the open arc (p, q). Starting from the function α, we define an
alternating 2-cocycle taking values in the Borel function on Bund2(X) by setting

ωX(p, q, r) := α(p, q) + α(q, r) + α(r, p).

Notice that ωX(p, q, r) vanishes at a triple (a, C,C ′) unless a is the intersection
point of the arcs [p, q], [q, r], [p, r].

By restricting ωX to the subbundle Λ(X) ⊂ Bund2(X) defined over the branch
points of X, Duchesne and Monod [DM18, Proposition 9.1] proved that

ωX : X3 → �p(Λ(X))

is a Homeo(X)-equivariant alternanting bounded Borel cocycle, where 1 ≤ p < ∞.
The space �p(Λ(X)) is the space of p-summable functions on Λ(X), which is a
separable isometric dual Banach Homeo(X)-module. In particular, by [Mon01,
Lemma 3.3.3] the Borel structures induced by the norm topology, the weak topology
and the weak-∗ topology all coincide.

Given 1 ≤ q < ∞, we recall the definition of the Bochner space

Lq(Ω, �p(Λ(X))) := {u : Ω → �p(Λ(X)) |
∫
Ω

‖u(s)‖q�pdμ(s) < ∞}.

In an analogous way, for q = ∞ we can set

nL∞(Ω, �p(Λ(X))) := {u : Ω → �p(Λ(X)) | ess supΩ‖u(s)‖�p < ∞}.
For every 1 ≤ p < ∞, 1 ≤ q ≤ ∞, the Bochner space defined above is a Banach
space. Additionally, we have a natural Γ-action defined by

(10) ((γ.u)(s))(a) := u(γ−1.s)(σ(γ−1, s)−1(a)),

for every γ ∈ Γ, a ∈ Λ(X) and almost every s ∈ Ω. In this way we get a coefficient
Γ-module.

Theorem 4.1. Let Γ be a countable group and let (Ω, μ) be an ergodic standard
Borel probability Γ-space. Let σ : Γ × Ω → X be a non-elementary virtual dendro-
morphism. Denote by V = L∞(Ω, �p(Λ(X))). Then H2

b(Γ;V ) contains a canonical
non-trival element for 1 ≤ p < ∞.

Proof. Let B a Γ-boundary. By Theorem 3.8 there exists a Furstenberg map

φ : B × Ω → X,

and by Remark 3.9 this map can be chosen canonically. We can now compose φ
with the cocycle ωX to get a map

φ∗ωX : B3 × Ω → �p(Λ(X)),

φ∗ωX(b1, b2, b3, s) := ωX(φs(b0), φs(b1), φs(b2)),

that can be viewed as an alternating bounded measurable Γ-invariant cocycle

φ∗ωX : B3 → L∞(Ω, �p(Λ(X))),

in virtue of the exponential law [Mon01, Corollary 2.3.3].
By [BM02, Theorem 2], the fact that B is an amenable Γ-space implies that φ∗ωX

represents canonically a bounded cohomology class [φ∗ωX ] in degree two, that is
in H2

b(Γ; L
∞(Ω, �p(Λ(X)))). The alternating property of ωX and the ergodicity of

B ×B ×Ω imply that the non-vanishing of φ∗ωX guarantees that the class [φ∗ωX ]
is not trivial [BM02].
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Thus, we are left to show that φ∗ωX does not vanish identically. By contradic-
tion, suppose that it is actually trivial. This means that

ωX(φs(b0), φs(b1), φs(b2)) = 0,

for almost every s ∈ Ω and almost every b0, b1, b2 ∈ B. By Fubini’s Theorem we
can fix two points b0, b1 such that

ωX(φs(b0), φs(b1), φs(b)) = 0,

for almost every b ∈ B. This implies for almost every s ∈ Ω, the essential image
Es contains at most two points. By the ergodicity of Ω, the cardinality of Es is
essentially constant, so either we have a map Ω → X or a map Ω → P2(X). In
both cases, the map is Γ-equivariant by the equivariance of the Furstenberg map.
This would imply that σ is elementary contradicting the assumptions. �

We are finally ready to prove

Theorem 1. Let Γ be a countable group and let (Ω, μ) be an ergodic standard Borel
probability Γ-space. Given a non-elementary virtual dendro-morphism σ : Γ×Ω →
Homeo(X), there exists a canonical unitary Γ-representation V without invariant
vectors and such that H2

b(Γ;V ) has a non-zero class.

Proof. Consider the Bochner space V = L2(Ω, �2(Λ(X))). The latter is a Hilbert
space with the scalar product defined by

〈u, v〉V :=

∫
Ω

〈u(s), v(s)〉�2(Λ(X))dμ(s).

Since Ω is a standard Borel space and �p(Λ(X)) is separable, V is separable as
well. The inclusion

L∞(Ω, �2(Λ(X))) → V

is injective and adjoint, thus [BM02, Corollary 9] implies that the map

H2
b(Γ; L

∞(Ω, �2(Λ(X)))) → H2
b(Γ;V )

is injective. As a consequence the class [φ∗ωX ] constructed in Theorem 4.1 is not
trivial when viewed as a class with coefficients in V .

We are left to show that V does not contain any invariant vector. Suppose by
contradiction that u ∈ V is an invariant vector. This means that γ.u = u for every
γ ∈ Γ. Using Equation (10) we have that

u(s)(a) = u(γ−1.s)(σ(γ−1, s)−1(a)),

for every γ ∈ Γ, a ∈ Λ(X) and almost every s ∈ Ω. As a consequence we have that
the function

s �→ ‖u(s)‖�∞
is essentially constant, by the ergodicity of Ω. Let λ be the essential image. We
define

Λs := {a ∈ Λ(X) | |(u(s)(a))| = λ}.
Since the function u(s) ∈ �2(Λ(X)), the set Λs is not empty and finite for almost
every s ∈ Ω.

Let π : Λ(X) → Br(X) the bundle projection over the branch points of X. We
define

Ls := π(Λs).
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Since the level set Λs is finite, the same holds for Ls. Being finite, we have that Ts :=
[Ls] is a tree. Additionally, the Γ-invariance of u and the Homeo(X)-equivariance
of the projection π imply that

Lγ.s = σ(γ, s)Ls,

and hence

Tγ.s = σ(γ, s)Ts.

Since the tree Ts is finite, we can apply Jordan’s algorithm [Jor69] to get a unique
point or egde: in each step we eliminate the leaves of Ts having a free vertex until
we obtain either a unique edge (the center) or a set of egdes joined by a unique
point (the center). Thus, applying to each Ts the Jordan’s center construction, we
get either an equivariant map ϕ : Ω → X or an equivariant map ϕ : Ω → P2(X).
In this way we get a contradiction to the non-elementarity of σ. �

Using Theorem 1 we can finally prove our main result.

Theorem 2. Let G be a connected almost k-simple algebraic group over a field
κ with rankκ(G) ≥ 2. Let Γ be a lattice the k-points of G. Any virtual dendro-
morphism of Γ over an ergodic standard Borel probability Γ-space is elementary.

Proof. Let σ : Γ×Ω → Homeo(X) be a virtual dendro-morphism. Suppose by con-
tradiction that σ is not elementary. Take the unitary representation V of Theorem
1. Since V has no invariant vectors, by [MS04, Theorem 1.4] we have that

dimH2
b(Γ;V ) = 0.

The latter is a contradiction to the fact stated in Theorem 1 which guarantees the
existence of a non-trivial class in degree 2. This proves the statement and concludes
the proof. �
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