The recent advancements in Intelligent Transportation Systems (ITS) have revealed significant potential for enhancing traffic management through Advanced Driver Assist Systems (ADASs), with benefits for both safety and environment. This research paper proposes a vehicle localization technique based on Kalman filtering, as accurate positioning of the ego-vehicle is essential for the proper functioning of the Traffic Light Advisor (TLA) system. The aim of the TLA is to calculate the most suitable speed to safely reach and pass the first traffic light in front of the vehicle and subsequently keep that velocity constant to overcome the following traffic light, thus allowing safer and more efficient driving practices, thereby reducing safety risks, and minimizing energy consumption. To overcome Global Positioning Systems (GPS) limitations encountered in urban scenarios, a multi-rate sensor fusion approach based on the Kalman filter with map matching and a simple kinematic one-dimensional model is proposed. The experimental results demonstrate an estimation error below 0.5 m on urban roads with GPS signal loss areas, making it suitable for TLA application. The experimental validation of the Traffic Light Advisor system confirmed the expected benefits with a 40% decrease in energy consumption compared to unassisted driving.

Vehicle Localization Kalman Filtering for Traffic Light Advisor Application in Urban Scenarios

Vignarca, Daniele;Arrigoni, Stefano;Sabbioni, Edoardo
2023-01-01

Abstract

The recent advancements in Intelligent Transportation Systems (ITS) have revealed significant potential for enhancing traffic management through Advanced Driver Assist Systems (ADASs), with benefits for both safety and environment. This research paper proposes a vehicle localization technique based on Kalman filtering, as accurate positioning of the ego-vehicle is essential for the proper functioning of the Traffic Light Advisor (TLA) system. The aim of the TLA is to calculate the most suitable speed to safely reach and pass the first traffic light in front of the vehicle and subsequently keep that velocity constant to overcome the following traffic light, thus allowing safer and more efficient driving practices, thereby reducing safety risks, and minimizing energy consumption. To overcome Global Positioning Systems (GPS) limitations encountered in urban scenarios, a multi-rate sensor fusion approach based on the Kalman filter with map matching and a simple kinematic one-dimensional model is proposed. The experimental results demonstrate an estimation error below 0.5 m on urban roads with GPS signal loss areas, making it suitable for TLA application. The experimental validation of the Traffic Light Advisor system confirmed the expected benefits with a 40% decrease in energy consumption compared to unassisted driving.
2023
ADAS
GPS
ITS
Kalman filter
TLA
kinematic model
vehicle localization
File in questo prodotto:
File Dimensione Formato  
Vehicle Localization Kalman Filtering for Traffic Light Advisor Application in Urban Scenarios.pdf

accesso aperto

Dimensione 3.93 MB
Formato Adobe PDF
3.93 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1249978
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact