Introduction: Studies integrating functional near-infrared spectroscopy (fNIRS) with functional MRI (fMRI) employ heterogeneous methods in defining common regions of interest in which similarities are assessed. Therefore, spatial agreement and temporal correlation may not be reproducible across studies. In the present work, we address this issue by proposing a novel method for integration and analysis of fNIRS and fMRI over the cortical surface. Materials and methods: Eighteen healthy volunteers (age mean±SD 30.55 ± 4.7, 7 males) performed a motor task during non-simultaneous fMRI and fNIRS acquisitions. First, fNIRS and fMRI data were integrated by projecting subject- and group-level source maps over the cortical surface mesh to define anatomically constrained functional ROIs (acfROI). Next, spatial agreement and temporal correlation were quantified as Dice Coefficient (DC) and Pearson's correlation coefficient between fNIRS-fMRI in the acfROIs. Results: Subject-level results revealed moderate to substantial spatial agreement (DC range 0.43 - 0.64), confirmed at the group-level only for blood oxygenation level-dependent (BOLD) signal vs. HbO2 (0.44 - 0.69), while lack of agreement was found for BOLD vs. HbR in some instances (0.05 - 0.49). Subject-level temporal correlation was moderate to strong (0.79 - 0.85 for BOLD vs. HbO2 and -0.62 to -0.72 for BOLD vs. HbR), while an overall strong correlation was found for group-level results (0.95 - 0.98 for BOLD vs. HbO2 and -0.91 to -0.94 for BOLD vs. HbR). Conclusion: The proposed method directly compares fNIRS and fMRI by projecting individual source maps to the cortical surface. Our results indicate spatial and temporal correspondence between fNIRS and fMRI, and promotes the use of fNIRS when more ecological acquision settings are required, such as longitudinal monitoring of brain activity before and after rehabilitation.

Surface-based integration approach for fNIRS-fMRI reliability assessment

Bonilauri, Augusto;Pirastru, Alice;Baselli, Giuseppe;
2023-01-01

Abstract

Introduction: Studies integrating functional near-infrared spectroscopy (fNIRS) with functional MRI (fMRI) employ heterogeneous methods in defining common regions of interest in which similarities are assessed. Therefore, spatial agreement and temporal correlation may not be reproducible across studies. In the present work, we address this issue by proposing a novel method for integration and analysis of fNIRS and fMRI over the cortical surface. Materials and methods: Eighteen healthy volunteers (age mean±SD 30.55 ± 4.7, 7 males) performed a motor task during non-simultaneous fMRI and fNIRS acquisitions. First, fNIRS and fMRI data were integrated by projecting subject- and group-level source maps over the cortical surface mesh to define anatomically constrained functional ROIs (acfROI). Next, spatial agreement and temporal correlation were quantified as Dice Coefficient (DC) and Pearson's correlation coefficient between fNIRS-fMRI in the acfROIs. Results: Subject-level results revealed moderate to substantial spatial agreement (DC range 0.43 - 0.64), confirmed at the group-level only for blood oxygenation level-dependent (BOLD) signal vs. HbO2 (0.44 - 0.69), while lack of agreement was found for BOLD vs. HbR in some instances (0.05 - 0.49). Subject-level temporal correlation was moderate to strong (0.79 - 0.85 for BOLD vs. HbO2 and -0.62 to -0.72 for BOLD vs. HbR), while an overall strong correlation was found for group-level results (0.95 - 0.98 for BOLD vs. HbO2 and -0.91 to -0.94 for BOLD vs. HbR). Conclusion: The proposed method directly compares fNIRS and fMRI by projecting individual source maps to the cortical surface. Our results indicate spatial and temporal correspondence between fNIRS and fMRI, and promotes the use of fNIRS when more ecological acquision settings are required, such as longitudinal monitoring of brain activity before and after rehabilitation.
2023
Functional magnetic resonance imaging
Functional near-infrared spectroscopy
Rehabilitation
Spatial agreement
Surface-based integration
Temporal correlation
File in questo prodotto:
File Dimensione Formato  
Bonilauri-Pirastru - fNIRS fMRI - JNScMeth 2023.pdf

accesso aperto

: Publisher’s version
Dimensione 4.44 MB
Formato Adobe PDF
4.44 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1249800
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact