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A B S T R A C T   

Introduction: Studies integrating functional near-infrared spectroscopy (fNIRS) with functional MRI (fMRI) 
employ heterogeneous methods in defining common regions of interest in which similarities are assessed. 
Therefore, spatial agreement and temporal correlation may not be reproducible across studies. In the present 
work, we address this issue by proposing a novel method for integration and analysis of fNIRS and fMRI over the 
cortical surface. 
Materials and methods: Eighteen healthy volunteers (age mean±SD 30.55 ± 4.7, 7 males) performed a motor task 
during non-simultaneous fMRI and fNIRS acquisitions. First, fNIRS and fMRI data were integrated by projecting 
subject- and group-level source maps over the cortical surface mesh to define anatomically constrained func-
tional ROIs (acfROI). Next, spatial agreement and temporal correlation were quantified as Dice Coefficient (DC) 
and Pearson’s correlation coefficient between fNIRS-fMRI in the acfROIs. 
Results: Subject-level results revealed moderate to substantial spatial agreement (DC range 0.43 – 0.64), 
confirmed at the group-level only for blood oxygenation level-dependent (BOLD) signal vs. HbO2 (0.44 – 0.69), 
while lack of agreement was found for BOLD vs. HbR in some instances (0.05 – 0.49). Subject-level temporal 
correlation was moderate to strong (0.79 – 0.85 for BOLD vs. HbO2 and − 0.62 to − 0.72 for BOLD vs. HbR), while 
an overall strong correlation was found for group-level results (0.95 – 0.98 for BOLD vs. HbO2 and − 0.91 to 
− 0.94 for BOLD vs. HbR). 
Conclusion: The proposed method directly compares fNIRS and fMRI by projecting individual source maps to the 
cortical surface. Our results indicate spatial and temporal correspondence between fNIRS and fMRI, and pro-
motes the use of fNIRS when more ecological acquision settings are required, such as longitudinal monitoring of 
brain activity before and after rehabilitation.   

1. Introduction 

Both functional Near-Infrared Spectroscopy (fNIRS) and functional 
Magnetic Resonance Imaging (fMRI) map the activity of cortical areas 
based on neurovascular coupling and the consequent hemodynamic 
response (Ferrari and Quaresima, 2012). However, several differences 
exist between the two techniques. First, fMRI bases its measure on the 
blood oxygen level-dependent (BOLD) signal, measuring the difference 
in the ratio between oxygenated [HbO2] and deoxygenated hemoglobin 
[HbR] concentrations, which in turn causes differences in magnetic 
susceptibility. Conversely, fNIRS directly measures [HbO2] and [HbR]
concentrations (Fantini and Sassaroli, 2020; Torricelli et al., 2014) or, in 

the case of continuous-wave technologies, variations of these concen-
trations (Δ[HbO2] and Δ[HbR]) (Scholkmann et al., 2014). Secondly, 
fMRI has a higher spatial resolution and it is based on volumetric 
sensing, thus reaching deep structures. Conversely, the spatial resolution 
of fNIRS is limited to source-detector distances, and therefore to the 
superficial layers of the cortical surface (Tachtsidis and Scholkmann, 
2016). Moreover, fNIRS is sensitive to several physiological confounding 
factors and requires the adoption of careful pre-processing and analysis 
pipelines in clinical applications (Bonilauri et al., 2021; Pfeifer et al., 
2018). On the other hand, fNIRS has a higher temporal resolution than 
fMRI and offers a less restrictive and more ecologic acquisition setting, 
allowing the subject to move more freely and to perform a wider range 
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of motor tasks (Cutini et al., 2012; Pinti et al., 2020). 
In the context of functional neuroimaging, fMRI is still considered 

the gold standard, given its optimal spatial specificity compared to 
fNIRS (Klein et al., 2022; Scarapicchia et al., 2017), which conversely 
provides an indirect reference to cortical regions due to the lack of 
anatomical information (Strangman et al., 2013). Hence, fNIRS inte-
gration with anatomical MRI is warranted to better localize the observed 
functional activations (Bonilauri et al., 2023). Moreover, fNIRS needs to 
be integrated with fMRI and the evaluation of its reliability must be 
performed to establish the level of agreement between these two 
techniques. 

Several studies investigated the fNIRS/fMRI correspondence, both 
simultaneously (Anwar et al., 2016; Cui et al., 2011; Huppert et al., 
2017a; Huppert et al., 2006; Kleinschmidt et al., 1996; Mehagnoul--
Schipper et al., 2002; Sato et al., 2013; Strangman et al., 2002; Toronov 
et al., 2003; Toronov et al., 2001; Wijeakumar et al., 2017) or separately 
(Klein et al., 2022; Noah et al., 2015) (Cai et al., 2021) (Wagner et al., 
2021) (Maggioni et al., 2015), during the execution of tasks. For 
instance, Toronov et al. (Toronov et al., 2001) qualitatively studied both 
temporal and spatial signal correspondence, showing a good temporal 
correlation between fNIRS and fMRI signals located in the expected 
motor areas. A moderate to high temporal correlation between fNIRS 
and fMRI signals was also observed in Huppert et al. ( Huppert et al., 
2006), Mehagnoul-Schipper et al. (Mehagnoul-Schipper et al., 2002) 
and Noah et al. (Noah et al., 2015), while highly variable correlation was 
reported by Strangman et al. (Strangman et al., 2002). In addition, Klein 
et al. (Klein et al., 2022) recently found comparable fNIRS-fMRI spatial 
specificity and task sensitivity for motor execution tasks. 

Previous studies mainly considered the temporal correspondence 
across modalities, while overlooking or only qualitatively assessing 
fMRI vs. fNIRS spatial agreement. Specifically, with spatial agreement, 
we refer to the correspondence of statistically significant functional 
activation as alternatively seen by fMRI or fNIRS according to corre-
sponding anatomical areas and/or regions of interest (ROIs). Spatial 
agreement in the current fNIRS-fMRI literature has mostly assessed the 
correspondence between fNIRS source and detector positions with 
respect to cortical areas from anatomical MRI (Kleinschmidt et al., 1996; 
Mehagnoul-Schipper et al., 2002; Strangman et al., 2002; Toronov et al., 
2003; Toronov et al., 2001). As a result, both fMRI and fNIRS signals are 
averaged through heterogeneous methods to define a common analysis 
space, thus possibly affecting the reproducibility of results if employing 
a different fNIRS probe configuration. 

Conversely, few studies have quantitatively assessed fNIRS-fMRI 
spatial agreement based on a direct correspondence between fMRI and 
fNIRS maps obtained by projecting fNIRS signals onto the individual 
cortical anatomy (Cai et al., 2022; Eggebrecht et al., 2012, 2014; Hup-
pert et al., 2017a; Yamashita et al., 2016) (Pereira et al., 2023). How-
ever, the translation of these approaches in clinical research may be 
limited by the need of combining different methodologies for the anal-
ysis of each technique. Consequently, the integration of fMRI and fNIRS 
data remains an open matter of research (Yücel et al., 2021). 

The current work addressed two major aspects of non-simultaneous 
fMRI and fNIRS acquisitions in a cohort of young healthy volunteers 
performing a motor task. Firstly, a surface-based method to simulta-
neously analyze and integrate fNIRS-fMRI was proposed consisting in 
projecting individual source maps over cortical surfaces derived from 
anatomical MRI volumes. In this way, fNIRS and fMRI data are not 
individually processed in their native spaces (i.e., surface channels space 
and volumetric space respectively), but both are projected onto the 
vectorized cortical surface, thus permitting the direct comparison of 
fNIRS and fMRI within the same anatomical space with a vertex-wise 
analysis. The second aim of this work was to assess the reliability of 
fNIRS data by focusing on its spatial agreement with fMRI, which was 
quantitatively assessed by means of cluster overlap methods (Fröhner 
et al., 2019). Temporal comparison between fMRI and fNIRS signals was 
also performed to assess a measure of local reliability using the proposed 

surface-based integration approach and compare results with the 
literature. 

2. Materials and methods 

2.1. Participants 

Eighteen healthy volunteers (age mean±SD 30.55 ± 4.7, 7 males) 
were enrolled in this study. The absence of neurological, neuropsychi-
atric, and cardiovascular disorders was considered as inclusion criteria 
and assessed through a clinical interview. A further inclusion criterion 
was the absence of contraindication to the MRI examination (e.g., 
claustrophobia, presence of metallic prosthetics etc.). The study was 
performed according to the principles of the Helsinki declaration and 
was approved by the IRCCS Fondazione Don Gnocchi Ethical Committee 
(protocol code CE_FdG/262020/153105202). Written informed consent 
was signed by each participant. 

Subjects performed a motor task paradigm in separate fMRI and 
fNIRS sessions and were randomized according to the order of acquisi-
tion. Eleven subjects underwent the fMRI acquisition first. 

2.2. Motor paradigm 

The same motor paradigm was administered during the separate 
fMRI and fNIRS sessions. The experimental paradigm was implemented 
using E-Prime 3.0 (Psychology Software Tools, https://pstnet.com/pro 
ducts/e-prime/), and consisted of a block-design (AB-CB) alternating 2 
conditions: resting period (B, 20 s), in which the subjects were asked to 
stare at a fixed white cross, and active periods (A and C, 10 s) in which 
the subjects performed hand movements by squeezing a rubber ball. The 
active periods were pseudo-randomized in equal numbers of Left (L) and 
Right (R) hand movements according to a visual cue consisting of a 
blinking white cross. The total duration of the experiment was about 
10 min. All subjects performed the whole task correctly as visually 
checked by the fNIRS or fMRI operator. 

2.3. MRI acquisition protocol 

The MRI protocol was acquired on a 3 T Siemens Prisma scanner 
(Erlangen, Germany) equipped with a 64-channel head-neck coil and 
consisted of: 1) a volumetric high-resolution T1-weighted 
magnetization-prepared rapid acquisition with gradient-echo 
(MPRAGE) sequence with repetition time (TR) = 2300 ms, echo time 
(TE) = 3.1 ms, isotropic resolution = 0.8 × 0.8 × 0.8 mm3, 224 slices, 
which was used as anatomical reference for both fMRI and fNIRS data 
analyses; 2) a multi-band gradient-echo functional sequence with TR 
= 2000 ms, TE = 30 ms, resolution 3×3×3 mm3, 52 slices, 310 mea-
surements, which was acquired during the motor task performance. The 
resulting sampling frequency of the BOLD time series was 0.5 Hz. 

The visual stimulus, which served as a cue for motor grasping, was 
administered using NordicNeuroLab (https://www.nordicneurolab. 
com/) with an “In-room Viewing Device” video system consisting of 
an MR compatible display located at the end of the scanner gantry and a 
mirror placed on the head coil. The visual stimuli were synchronized 
with the MRI acquisition using a stimulus synchronization device 
(SyncBox). 

2.4. fNIRS acquisition protocol 

fNIRS data were acquired during the motor task performance with a 
continuous-wave system at 760 and 850 nm wavelengths with a 1.95 Hz 
sampling rate (NIRScoutX 32 ×32, NIRx Medizintechnik, Berlin, Ger-
many) along with 32 LED sources and 32 avalanche photodiode de-
tectors. Source and detector pairs were placed according to the 
international 10/5 EEG system and the resulting configuration consisted 
of 102 measurement channels capable of covering the subject’s entire 
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scalp surface. The visual stimuli guiding the grasp execution were pre-
sented using a laptop and were synchronized to the fNIRS system using 
the ‘Cedrus StimTracker Duo’ (Cedrus Corporation, https://cedrus.com/ 
stimtracker/index.htm) trigger box. Before the beginning of the first L or 
R task of the acquisition, a 30 s baseline period was also acquired to let 
the fNIRS signal reach a steady state. The participant was asked to 
maintain a still position without performing any action, hence reflecting 
the measurement of non-task-related physiological variations. 

2.5. fMRI and fNIRS data analysis and integration 

2.5.1. MRI and fMRI data preprocessing 
Each T13D MPRAGE image was preprocessed according to a stan-

dard pipeline, which included bias-correction for magnetic in-
homogeneity and skull stripping to remove non-brain tissue (FSL BET htt 
ps://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET). Further analyses were con-
ducted using the FreeSurfer (http://surfer.nmr.mgh.harvard.edu/) 
recon-all pipeline. Manual quality control was performed for each sub-
ject according to Klapwijk et al. (Klapwijk et al., 2019) and corrections 
were made when necessary. 

The fMRI dataset preprocessing was performed using FreeSurfer FS- 
FAST (https://surfer.nmr.mgh.harvard.edu/fswiki/FsFast) and 
comprised motion correction, smoothing, and sampling on to the sub-
ject’s left and right hemisphere cortical surfaces, obtained from the 
processing of the structural dataset. The preprocessed surfaces were 
converted and saved in Matlab (2017b, MathWorks) as vectors con-
taining BOLD time series per vertex, and successively imported into the 
Brainstorm application (Tadel et al., 2011) through user-defined scripts. 
Notably, user-defined scripts Matlab scripts involved the interpolation of 
BOLD time series to up-sample data points to fNIRS sampling frequency 
using a linear interpolation, hence allowing a direct fNIRS vs. fMRI 
comparison in spatial agreement and temporal correlation (see Sections 
2.6.3 and 2.6.4). 

2.5.2. fNIRS data preprocessing 
Standardized pipelines were also employed for fNIRS data analysis 

into the Brainstorm application using the Nirstorm package (https://gith 
ub.com/Nirstorm/nirstorm). Namely, channels having a coefficient of 
variation greater than 10% were first detected as bad channels and 
removed from further analyses. Then, raw intensity signals were con-
verted into optical density variations, corrected for motion artifacts 
according to the Temporal Derivative Distribution Repair algorithm 
(Fishburn et al., 2019), removed from linear trends and bandpass 
filtered in [0.01 – 0.08] Hz using an Infinite Impulse Response filter 
according to the guidelines of Nirstorm package. 

The above-mentioned anatomical MRI (T13D MPRAGE) data were 
employed to provide image reconstruction of fNIRS signals onto the 
individual subjects’ cortical anatomy. The fNIRS source and detector 
positions were referred to International 10/5 system (Jurcak et al., 
2007) locations, hence placed onto the subject’s scalp accordingly. 
Then, a virtual 10/5 cap model in Brainstorm was employed to register 
source and detector positions to the corresponding anatomical MRI 
volume, assuring the correspondence of relevant landmarks. As a quality 
check, source and detector positions were registered to the Montreal 
Neurological Institute (MNI) space, observing a low dispersion of cor-
responding positions across subjects (see Supplementary material 
Table S1 and Fig. S1 for further details). 

The forward sensitivity matrix (i.e., from cortical elements to surface 
channels) was first computed as described in Bonilauri et. al (Bonilauri 
et al., 2023). Briefly, GPU-accelerated Monte Carlo (MC) simulations 
(Fang and Boas, 2009) were run according to 5 • 107 photons and a 
five-layered model (i.e., scalp, skull, cerebrospinal fluid, grey and white 
matter) using the optical properties from the work of Tak et al. (Tak 
et al., 2015) and Eggbrecht et al. (Eggebrecht et al., 2012) (Table 2.1). 
The resulting volumetric fluences were then interpolated onto the 
cortical surface using a Voronoi-based method (Grova et al., 2006), 

smoothed with a 2 mm FWHM Gaussian kernel and normalized by the 
maximum wavelength-specific value across all measurement channels. 
Finally, the inverse problem of projecting surface measurements onto 
the cortical surface was solved through the depth weighted Minimum 
Norm Estimate algorithm (Cai et al., 2022; Machado et al., 2018) using a 
field of view of 4 cm and a depth weighting factor of 0.3. In addition, 
noise covariance was estimated over a 30 s baseline period prior to the 
first L or R task of the acquisition. This 30 s baseline period is employed 
by the depth-weighted Minimum Norm Estimate algorithm to compute 
two diagonal matrices, one for modeling the measurement noise and one 
for estimating an a-priori distribution of absorption coefficients. We 
observed a comparable median and interquartile range of diagonal 
values across subjects and wavelengths, thus concluding that noise 
covariance was comparable across optodes (see Supplementary material 
Table S2 for further details). 

2.6. Surface-based approach for ex-post data integration 

The proposed surface-based approach involves the statistical analysis 
of both fMRI and fNIRS data in a common space and defines statistically- 
driven ROIs for comparing fMRI vs. fNIRS. We will refer to fMRI data as 
the BOLD time course, while to fNIRS data by respectively considering 
Δ[HbO2] and Δ[HbR] time courses. 

The proposed surface-based approach is composed by two successive 
steps: i) definition of functional ROIs according to statistical activation 
maps for fNIRS and fMRI data (Section 2.6.1); ii) definition of anatom-
ically constrained functional ROIs (acfROI) by thresholding statistical 
activation maps with respect to cortical parcellations of interest (Section 
2.6.2). Then, a reliability analysis regarding the spatial agreement 
(Section 2.6.3) and temporal correlation (Section 2.6.4) of fNIRS with 
respect to fMRI statistical activation maps is performed by gathering the 
data derived from the acfROIs and their intersection. 

The proposed common space is represented by subject-specific 
cortical surfaces preprocessed in FreeSurfer as vectorized meshes. All 
statistical analyses are performed over cortical surfaces, hence denoting 
the proposed approach as an intrinsic surface-based method. Brainstorm 
was used as a common computational platform. In addition, all 
computational steps, described in detail in Sections 2.6.1 and 2.6.2, 
were first performed on subject-specific anatomies, using the acquired 
T1 3D MPRAGE, and successively onto group-level anatomy. In this 
work we employed the ICBM152 template (Fonov et al., 2011) due to its 
wide adoption in the fNIRS literature (Aasted et al., 2015; Huppert et al., 
2009; Santosa et al., 2018; Strangman, Li, and Zhang, 2013). An illus-
trative scheme of the proposed method and performed analyses are 
displayed in Fig. 2.1. 

Current applications in the fNIRS-fMRI literature employ heteroge-
neous methods for multimodal integration and analyses. Specifically, 
fNIRS and fMRI data are often processed with different software, while 
the definition of ROIs for conducting spatial agreement and temporal 
correlation is often based on the sole correspondence between fNIRS 
channel positions and anatomical landmarks derived from structural 
MRI. Conversely, the proposed approach directly analyzes fNIRS and 
fMRI data in the same environment by projecting individual source 

Table 2.1 
Optical properties of the five-layered model employed in Monte Carlo forward 
problem (absorption coefficient μa, scattering coefficient μs, anisotropy factor g, 
refraction index n).   

760 nm 850 nm   

μa μs μa μs g n 

Scalp 0017 6727 0019 5818 0,89 1,37 
Skull 0,0116 8545 0,0139 7636 0,89 1,37 
CSF 0004 2727 0004 2727 0,89 1,37 
GM 0018 7599 0,0192 6165 0,89 1,37 
WM 0,0167 10,825 0,0208 9188 0,89 1,37  
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maps to the cortical surface, which is computed as a vectorized mesh 
with an average of 15000 elements across subject-specific and atlas- 
based anatomies. In turn, employing this cortical surface representa-
tion also allows for the assessment of spatial agreement between fNIRS 
and fMRI maps. Among other advantages of the method, we find: i) 
thresholding operations are limited to only statistical maps of activa-
tions, thus allowing the reproducibility of the method over different 
datasets (Section 2.6.1); ii) the definition of acfROIs (Section 2.6.2) is 
intrinsically based on cortical parcellations, which are well defined 
across neuroimaging studies and dedicated software. 

2.6.1. fNIRS and fMRI functional ROIs: statistical maps computation 
The first step was to compute statistical maps to define data-driven 

functional ROIs for fMRI vs. fNIRS comparison, both across subjects 
and at the group level. Thus, reconstructed fNIRS and BOLD signals on 
the cortical surface were separately analyzed through a generalized 
linear model (GLM) to contrast L and R task conditions and generate the 
respective tvalue cortical maps of significant cortical activation. Group- 

level statistical maps additionally required subject coregistration by 
projecting subject-specific contrasts onto the ICBM152 template cortical 
surface according to FreeSurfer spherical representation. 

In this study, GLM analysis employed a constant regressor and the 
deconvolution between task timing and the canonical hemodynamic 
response function (Penny et al., 2007) to define the design matrix. The 
GLM analysis considered reconstructed fNIRS HbO2 and HbR (for the 
sake of simplicity, we will generally indicate fNIRSHbX, referring to 
either fNIRSHbO2 or fNIRSHbR), and fMRI BOLD time series as experi-
mental data. The GLM solution included an ordinary least square solu-
tion with singular value decomposition as a criterion for design matrix 
inversion. As well, GLM contrasts separately considered L or R task 
conditions, while functional ROIs were considered significant if the tvalue 

map was associated with pFDR < 0.05 corrected for multiple compari-
sons according to false discovery rate correction (pFDR) (Benjamini and 
Hochberg, 1995). Furthermore, punc< 0.05 and punc< 0.001, uncorrected 
for multiple comparisons, were considered as statistical thresholds for 
further reliability analyses as detailed below. These different statistical 

Fig. 2.1. The figure describes the methods applied to anatomically constrain the functional activation maps of both fNIRS and fMRI and finally define the acf∩ (panel 
A) which will be used in the following for assessing spatial agreement according to Dice Coefficient (panel B) and temporal correlation (panel C). 
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thresholds were chosen since they represent the most employed critical 
values in both fNIRS and fMRI studies (Poldrack et al., 2008; Tak and Ye, 
2014; Yeung, 2018; Yücel et al., 2021). 

2.6.2. Anatomically-constrained functional ROIs (acfROI) definition 
We computed the intersection between the fMRI or fNIRSHbX func-

tional ROIs, obtained by thresholding the statistical maps at different 
significance thresholds (namely, pFDR < 0.05, punc<0.05, punc<0.001), 
and cortical parcellations of interest. The use of three different statistical 
thresholds, ranging from punc< 0.05 as the least restrictive to 
punc< 0.001 as the most conservative, allowed us to comprehensively 
compare the spatial agreement of the two techniques, which is often 
overlooked. Indeed, different statistical thresholds change the extension 
of significant activation over fNIRS and fMRI functional maps, conse-
quently impacting the spatial agreement analysis. 

As the employed paradigm was a motor task, we chose the bilateral 
pre- and postcentral parcels derived from the Desikan-Killiany 
anatomical atlas (Desikan et al., 2006), representing the primary 
motor and sensorimotor cortices. Subject- and group-level 
fNIRSHbX/fMRI functional ROIs were separately computed for L and R 
task conditions, considering both contralateral and ipsilateral activation 
with respect to the hand performing the task. 

The intersection between functional ROIs and cortical parcellations 
resulted in an acfROI (Fig. 2.1 Panel A) that defines a data-driven 
method to compare significant activation across different methodolo-
gies. We will refer to acfMRI as the acfROI associated with significant 
fMRI activation maps, while acfNIRSHbX for fNIRS activation maps. 

2.6.3. Reliability assessment: spatial agreement 
The definition of acfMRI and acfNIRSHbX ROIs is a mandatory step to 

quantitatively assess the spatial correspondence between the two tech-
niques (Fig. 2.1 Panel B). Reliability was assessed based on cluster 
overlap methods. Specifically, we computed the Dice coefficient (DC) 
(Dice, 1945) between the surface regions identified by acfMRI and 
acfNIRSHbX (Fig. 2.1 Panel B, left) according to: 

DC(acfMRI, acfNIRSHbX) =
2 • (acfMRI ∩ acfNIRSHbX)

acfMRI + acfNIRSHbX

=
2 • acf∩

acfMRI + acfNIRSHbX
(1)  

where acf∩ = acfMRI ∩ acfNIRSHbX represents the common regions be-
tween fMRI and fNIRS. A DC comprised between 0 ≤DC≤ 0.2 was 
considered as slight agreement, fair between 0.21 ≤DC≤ 0.4, moderate 
between 0.41 ≤DC≤ 0.6, substantial between 0.61 ≤DC≤ 0.8 and 
almost perfect between 0.81 ≤DC≤ 1 (Pirastru et al., 2020). 

2.6.4. Reliability assessment: temporal correlation 
The temporal correlation between fMRI and fNIRS HbO2 and HbR 

signals was calculated on block averaged fMRI and fNIRSHbX responses 
for each task (i.e., L and R) over acfMRI and acfNIRSHbX (Fig. 2.1 Panel 
C). Block responses were considered in tn = [0; 30]s periods after each 
stimulus onset. The mean value of the 5 s period ahead of each stimulus 
tn = [ − 5; 0]s was subtracted as the baseline offset of the relevant repe-
tition, BLn. 

For each cortical fMRI and fNIRS signal, xMRI(t) and xNIRS(t) respec-
tively, we computed block averaged responses as 

yNIRS(tn) =
1

NB

∑NB

n=1
xNIRS(tn) −

1
NB

∑NB

n=1
BLNIRS,n  

yMRI(tn) =
1

NB

∑NB

n=1
xMRI(tn) −

1
NB

∑NB

n=1
BLMRI,n (2)  

where n = 1, 2,…,NB indicates the number of blocks (i.e., 10 repetitions 
per task in this study). 

These signals were then averaged inside each anatomical ROI 

indexed by l = 1, 2,…,L = 4 (i.e., bilateral pre- and postcentral parcels) 
to obtain ŷNIRS,l(tn) and ŷMRI,l(tn). Then, each signal was normalized 
according to its time course: 

yNIRS,l(tn) =
ŷNIRS,l(tn)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

tn ŷ2
NIRS,l(tn)

√ yMRI(tn) =
ŷMRI,l(tn)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

tn ŷ2
MRI,l(tn)

√ (5) 

Finally, the temporal correlation between yNIRS,l(tn) and yMRI,l(tn)

signals over the lth-region and N samples was computed: 

ρl =
1
N
∑

tn

yNIRS,l(tn) • yMRI,l(tn) (6) 

The resulting correlation values represent the actual Pearson’s cor-
relation coefficient between fNIRS vs. fMRI block averaged responses 
over corresponding acf∩ regions (e.g., acf∩ in left postcentral fNIRS 
signal vs. left postcentral fMRI signal). Correlation values were consid-
ered weak between 0 and 0.3 (− 0 to 0.3), moderate between 0.3 and 0.7 
(− 0.3 to − 0.7) and strong between 0.7 and 1 (− 0.7 to − 1) (Ratner, 
2009). 

The indices used to assess the spatial and temporal reliability are also 
reported in Table 2.2 for the sake of clarity, together with the mathe-
matical expression and the range for interpretation of the results. 

3. Results 

3.1. Reliability assessment: Spatial agreement 

The results for the comparison of the spatial extension between 
fNIRSHbX and fMRI activation maps are shown in Table 3.1, Table 3.2 
and Supplementary Material Table S6 respectively for pFDR< 0.05, 
punc< 0.05 and punc< 0.001 thresholds for statistical significance, both 
for subject and group levels. The spatial comparison between fNIRSHbX 

and fMRI activation maps at the group level is shown in Fig. 3.1 for 
pFDR< 0.05 as an example. Subject-specific and group-level DC values 
are displayed for both L and R task conditions over acf∩ regions (for 
interval values and interpretation refer to Table 2.2). 

Regarding the pFDR< 0.05 statistical threshold (Table 3.1), at the 
single-subject level, the DC yielded moderate to substantial agreement 
(DC range 0.43–0.64) for brain activation contralateral to the hand 
performing the grasp (highlighted in light grey in Table 3.1) and a fair 
agreement (DC range 0.23–0.4) for the ipsilateral one considering both 
acfMRI ∩ acfNIRSHbO2 and acfMRI ∩ acfNIRSHbR comparisons. At the 
group level, the contralateral activation DC values ranged between 0.44 
and 0.69, yielding moderate-to-substantial agreement when considering 
the acfMRI ∩ acfNIRSHbO2 , while dropping to slight-to-moderate 
(0.05–0.49) when considering the acfMRI ∩ acfNIRSHbR . For the ipsi-
lateral activation, DC values ranged between 0.01 and 0.06 resulting in a 
slight agreement for acfMRI ∩ acfNIRSHbO2 comparison, while no re-
sidual intersection survived for acfMRI ∩ acfNIRSHbR, mainly due to the 
absence or small extension of the acfNIRSHbR ROIs. We found a missing 
acfNIRSHbO2 ROI in 1–5 subjects across tasks, pre- and postcentral re-
gions, while in 2 to 7 subjects if considering acfNIRSHbR ROIs (see 
Supplementary Materials Table S3). 

Similar results were obtained for the punc < 0.05 (Table 3.2), 
yielding moderate-to-substantial and moderate DC for acfMRI ∩
acfNIRSHbO2 and acfMRI ∩ acfNIRSHbR comparisons respectively 
over the contralateral hemisphere to the task (highlighted in light grey 
in Table 3.2). Fair-to-moderate DC and fair DC were instead found for 
acfMRI ∩ acfNIRSHbO2 and acfMRI ∩ acfNIRSHbR ,respectively, 
regarding the ipsilateral activation maps. 

At the group level, we found a substantial DC for brain activation 
maps over the contralateral hemisphere in both acfMRI ∩ acfNIRSHbO2 
and acfMRI ∩ acfNIRSHbR comparisons. A lower agreement was 
instead observed for the ipsilateral hemisphere, with no intersection 
between acfMRI ∩ acfNIRSHbR within the right postcentral parcel 
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during right hand movements. Similarly, we found a lower number of 
missing acfNIRSHbO2 ROIs compared to acfNIRSHbR across tasks, pre- and 
post-central regions (see Supplementary Materials Table S4). 

For punc< 0.001, subject-level analysis indicated a moderate agree-
ment for contralateral activation (as highlighted in light grey in Sup-
plementary Materials Table S6) (0.42 <DC<0.51), although on average, 
8 out of 18 intersections were missing across parcels (see Supplementary 
Materials Table S5). More precisely, the number of missing acfNIRSHbO2 

and acfNIRSHbR were considerably higher than pFDR < 0.05 and punc <

0.05 cases, since ranging from 2–7 subjects for acfNIRSHbO2 and from 6 to 
11 for acfNIRSHbR ROIs. This last aspect affects group-level results, since 
we found no intersections within every considered parcel over ipsilateral 
activation in both acfMRI ∩ acfNIRSHbO2 and acfMRI ∩ acfNIRSHbR com-
parisons. The DC values also dropped for the contralateral activation, 
which yielded slight-to-fair agreement where the intersections were 
found. 

3.2. Assessment of temporal correlation 

The results of the temporal correlation between fNIRS and fMRI 
signals across subjects and at the group-level are reported in Table 3.3,  

Table 3.4 and Table 3.5 for the pFDR< 0.05, punc< 0.05 and punc< 0.001 
statistical thresholds, respectively. Pearson’s correlation coefficients are 
reported if statistically significant (p < 0.05) (for interval values and 
interpretation refer to Table 2.2). 

Results for statistical threshold pFDR< 0.05 at the single-subject level 
(Table 3.3) showed moderate-to-strong correlation (0.65–0.85) over 
ipsilateral and contralateral activation in acfMRI vs. acfNIRSHbO2 com-
parisons (i.e., contralateral activation is highlighted in light grey in 
Table 3.3), respectively. The correlation was moderate (− 0.41 to − 0.72) 
over ipsilateral and contralateral activation in acfMRI vs. acfNIRSHbR 

comparisons. At the group level (Table 3.3 and Fig. 3.2), a strong cor-
relation was found over the contralateral hemisphere for both the 
acfMRI vs. acfNIRSHbO2 comparison (0.95–0.98) and for acfMRI vs.
acfNIRSHbR comparison (− 0.91 to − 0.94). We did not always find a 
correlation for the ipsilateral activation. Nevertheless, we found a strong 
correlation between acfMRI vs. acfNIRSHbO2 (0.85–0.91) and acfMRI vs.
acfNIRSHbR (− 0.91) comparisons. 

Regarding the thresholding for punc< 0.05 (Table 3.4 and Fig. 3.3), at 
the subject level, we found a moderate-to-strong correlation (0.69–0.82) 
over contralateral activation in acfMRI vs. acfNIRSHbO2 , while moderate 
correlation (− 0.63 to − 0.67) was found in acfMRI vs. acfNIRSHbR (i.e., 

Table 2.2 
Overview of the reliability indexes used to assess spatial and temporal agreement between fNIRS and fMRI.  

Reliability indexes Measure definition Mathematical Expression Ranges for interpretation 

Dice Coefficient 
(DC) 

Cluster overlap method to assess spatial agreement (global 
reliability) 

DC =
2 • acf∩

acfMRI + acfNIRSHbX 

Slight 0 ≤DC≤ 0.2 
Fair 0.21 ≤DC≤ 0.4 

Moderate 0.41 ≤DC≤ 0.6 
Substantial 0.61 ≤DC≤ 0.8 

Almost Perfect 0.81 ≤DC≤ 1 
Pearson’s 

Correlation 
(ρ) 

Measure of association to assess temporal agreement 
(local reliability) ρl =

1
N
∑

tn

ŷNIRS,l(tn)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

tn ŷ2
NIRS,l(tn)

√ •

ŷMRI,l(tn)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

tn ŷ2
MRI,l(tn)

√

Weak 0 ≤ ρ ≤ 0.3 (− 0.3 < ρ ≤0) 
Moderate 0.3 < ρ ≤ 0.7 (− 0.7 < ρ 

≤− 0.3) 
Strong 0.7 < ρ ≤ 1 (− 1 < ρ ≤− 0.7) 

Legend: acf = anatomically constrained functional ROI; acf∩ = common regions between fMRI and fNIRS anatomically constrained functional ROIs; DC = Dice Co-
efficient; ρl = correlation between yNIRS,l(tn) and yMRI,l(tn) signals over the lth- anatomical region and N samples.  

Table 3.1 
Dice Coefficient (DC) obtained from the intersection between pFDR< 0.05 thresholded acfNIRSHbX and acfMRI at subject and group level for the left and right hand 
movements conditions. DC referred to brain activation contralateral to the hand performing the movements are highlighted in light grey. Legend: L=Left, R=Right, 
postC=postcentral area, preC=precentral area, acf=anatomically constrained functional ROI; SD=standard deviation; n.a.=absence of acfMRI ∩ acfNIRSHbX .   

Single-subject Level Group Level  

acfMRI ∩ acfNIRSHbO2 Mean±SD acfMRI ∩ acfNIRSHbR Mean±SD acfMRI ∩ acfNIRSHbO2 acfMRI ∩ acfNIRSHbR  

L  
Hand 

R Hand L  
Hand 

R Hand L  
Hand 

R Hand L  
Hand 

R Hand 

L postC 0.4 ± 0.24 0.64 ± 0.22 0.29 ± 0.28 0.45 ± 0.29 0.01 0.52 n.a. 0.05 
R postC 0.59 ± 0.18 0.31 ± 0.18 0.5 ± 0.27 0.23 ± 0.19 0.63 n.a. 0.49 n.a. 
L preC 0.39 ± 0.21 0.53 ± 0.27 0.37 ± 0.27 0.43 ± 0.28 0.06 0.69 n.a. 0.10 
R preC 0.59 ± 0.19 0.4 ± 0.14 0.56 ± 0.21 0.28 ± 0.17 0.44 0.05 0.24 n.a  

Table 3.2 
Dice Coefficient (DC) obtained from the intersection between punc< 0.05 thresholded acfNIRSHbX and acfMRI at subject and group level for the left and right hand 
movements conditions. DC referred to brain activation contralateral to the hand performing the movements are highlighted in light grey. Legend: L=Left, R=Right, 
postC=postcentral area, preC=precentral area, acf=anatomically constrained functional ROI; SD=standard deviation; n.a.=absence of acfMRI ∩ acfNIRSHbX .   

Single-subject Level Group Level  

acfMRI ∩ acfNIRSHbO2 Mean±SD acfMRI ∩ acfNIRSHbR Mean±SD acfMRI ∩ acfNIRSHbO2 acfMRI ∩ acfNIRSHbR  

L  
Hand 

R Hand L  
Hand 

R Hand L  
Hand 

R Hand L  
Hand 

R Hand 

L postC 0.42 ± 0.26 0.71 ± 0.18 0.33 ± 0.27 0.49 ± 0.29 0.45 0.8 0.19 0.62 
R postC 0.66 ± 0.15 0.35 ± 0.19 0.55 ± 0.27 0.25 ± 0.18 0.81 0.38 0.62 n.a. 
L preC 0.47 ± 0.22 0.61 ± 0.23 0.37 ± 0.26 0.52 ± 0.26 0.6 0.79 0.31 0.76 
R preC 0.58 ± 0.23 0.4 ± 0.2 0.53 ± 0.25 0.31 ± 0.2 0.7 0.41 0.61 0.15  
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contralateral activation is highlighted in light grey in Table 3.4). Cor-
relation in acfMRI vs. acfNIRSHbO2 was moderate-to-strong (0.61–0.75) 
also for ipsilateral activation; while lower correlation values were found 
in acfMRI vs. acfNIRSHbR, ranging between weak-to-moderate (− 0.29 to 
− 0.47). At the group level, we found a strong correlation over contra-
lateral and ipsilateral activation both considering the comparison with 
HbO2 (0.8–0.97) and HbR (− 0.82 to − 0.93). However, no significant 

correlation was found in acfMRI vs. acfNIRSHbR over right postcentral 
areas for right hand movement (i.e., ipsilateral activation; see Supple-
mentary Material Table S4). 

Finally, considering the punc< 0.001 threshold (Table 3.5 and Sup-
plementary Material Fig. S2) we found a moderate-to-strong correlation 
at the subject-level for both ipsilateral and contralateral activation in 
acfMRI vs. acfNIRSHbO2 (0.65–0.9) and acfMRI vs. acfNIRSHbR (− 0.37 to 

Fig. 3.1. An example of group-level cortical surfaces and process to define the acfROI (green for acfNIRSHbX and orange for acfMRI). The Dice Coefficient is finally 
computed as intersection between acfNIRS and acfMRI (i.e., acf∩). 

Table 3.3 
Significant correlation results (Pearson’s correlation coefficient, p < 0.05) averaged at single subject and group level for right and left hand movements conditions, 
considering statistical maps thresholding at pFDR< 0.05. Mean and standard deviation values are reported at single subject. Legend: L=Left, R=Right, post-
C=postcentral area, preC=precentral area, acf=anatomically constrained functional ROI; SD=standard deviation; n.a.=absence of maps intersection.   

Single-subject Level Group Level  

acfMRI vs.acfNIRSHbO2 MEAN±SD acfMRI vs.acfNIRSHbR Mean±SD acfMRI vs.acfNIRSHbO2 acfMRI vs.acfNIRSHbR  

L Hand R Hand L Hand R Hand L Hand R Hand L Hand R Hand 
L postC 0.65 ± 0.33 0.82 ± 0.14 -0.42 ± 0.58 -0.69 ± 0.49 0.91 0.95 -0.91 -0.94 
R postC 0.79 ± 0.19 0.75 ± 0.19 -0.72 ± 0.38 -0.41 ± 0.56 0.98 n.a. -0.92 n.a. 
L preC 0.77 ± 0.12 0.83 ± 0.11 -0.46 ± 0.49 -0.69 ± 0.55 0.9 0.96 n.a. -0.93 
R preC 0.85 ± 0.15 0.77 ± 0.15 -0.62 ± 0.57 -0.43 ± 0.65 0.96 0.85 -0.91 n.a.  

Table 3.4 
Significant correlation results (Pearson’s correlation coefficient, p < 0.05) averaged at single subject and group level for right and left hand movements conditions, 
considering statistical maps thresholding at punc< 0.05. Mean and standard deviation values are reported at single subject. Legend: L=Left, R=Right, post-
C=postcentral area, preC=precentral area, acf=anatomically constrained functional ROI; SD=standard deviation; n.a.=absence of maps intersection.   

Single-subject Level Group Level  

acfMRI vs.acfNIRSHbO2 Mean±SD acfMRI vs.acfNIRSHbR Mean±SD acfMRI vs.acfNIRSHbO2 acfMRI vs.acfNIRSHbR  

L  
Hand 

R Hand L Hand R Hand L Hand R Hand L Hand R Hand 

L postC 0.63 ± 0.33 0.8 ± 0.13 -0.47 ± 0.51 -0.65 ± 0.45 0.89 0.95 -0.86 -0.91 
R postC 0.69 ± 0.44 0.64 ± 0.36 -0.65 ± 0.49 -0.44 ± 0.58 0.97 0.89 -0.93 n.a. 
L preC 0.75 ± 0.13 0.82 ± 0.12 -0.44 ± 0.47 -0.67 ± 0.51 0.93 0.96 -0.82 -0.92 
R preC 0.74 ± 0.41 0.61 ± 0.36 -0.63 ± 0.53 -0.29 ± 0.7 0.94 0.8 -0.89 -0.47  
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− 0.84) (i.e., contralateral activation is highlighted in light grey in 
Table 3.5). At the group-level, we found strong correlation only over 
contralateral activation for acfMRI vs. acfNIRSHbO2 (0.94–0.97) and for 
left hand movement in the acfMRI vs. acfNIRSHbR (− 0.91 to − 0.92). No 
correlations were found for the acfMRI vs. acfNIRSHbR for right hand 
movement. 

4. Discussion 

fMRI and fNRIS are complementary non-invasive imaging modalities 
that indirectly measure brain activity based on local brain hemody-
namics. In this study, a surface-based method was proposed to integrate 
and directly compare fNIRS and fMRI data in the same environment 
(namely the Brainstorm software (Tadel et al., 2011)) by projecting in-
dividual source maps to common anatomical structures obtained from 
FreeSurfer preprocessed MRI data. In line with the guidelines proposed 

Table 3.5 
Significant correlation results (Pearson’s correlation coefficient, p < 0.05) averaged at single subject and group level for right and left hand movements conditions, 
considering statistical maps thresholding at punc < 0.001. Mean and standard deviation values are reported at single subject. Legend: L=Left, R=Right, post-
C=postcentral area, preC=precentral area, acf=anatomically constrained functional ROI; SD=standard deviation; n.a.=absence of maps intersection.   

Single-subject Level Group Level  

acfMRI vs.acfNIRSHbO2 Mean±SD acfMRI vs.acfNIRSHbR Mean±SD acfMRI vs.acfNIRSHbO2 acfMRI vs.acfNIRSHbR  

L Hand R Hand L Hand R Hand L Hand R Hand L Hand R Hand 
L postC 0.78 ± 0.09 0.88 ± 0.13 -0.37 ± 0.72 -0.65 ± 0.63 n.a. n.a. n.a. n.a. 
R postC 0.86 ± 0.06 0.82 ± 0.12 -0.84 ± 0.14 -0.58 ± 0.52 0.97 n.a. -0.92 n.a. 
L preC 0.65 ± 0.54 0.87 ± 0.12 -0.76 ± 0.19 -0.62 ± 0.63 n.a. 0.96 n.a. n.a. 
R preC 0.9 ± 0.06 0.8 ± 0.18 -0.58 ± 0.76 -0.55 ± 0.6 0.94 n.a. -0.91 n.a.  

Fig. 3.2. Group-level block averaged responses to right (top panel) and left hand movement (bottom panel) referred to acfNIRSHbO2 (left column), acfNIRSHbR (central 
column) and acfMRI (right column). Results are referred to a statistical threshold of pFDR < 0.05. For each task condition the fNIRS and fMRI activation maps are 
reported (t = 10.2 s) together with the signal waveforms of the contralateral neural response. The signals represent the average waveforms of the contralateral and 
ipsilateral pre and post central gyri (blue, red and yellow, green respectively). 
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by Yücel (Yücel et al. 2021), this approach first met the need for 
developing a unique method to combine and analyze multimodal data. 

Then, as a second aim, the reliability of fNIRS was assessed according 
to our method by means of cluster overlap methods and temporal cor-
relation, using fMRI as the gold standard. Specifically, we quantified the 
spatial agreement between techniques, which is often overlooked in the 
current fNIRS-fMRI literature, according to the DC. Furthermore, the 
temporal correlation of the block-average responses was assessed to 
compare our results with other fNIRS-fMRI studies. 

A motor task was employed, given its well-localized and robust ac-
tivations observed both with fNIRS (Kashou et al., 2016; Leff et al., 
2011) and fMRI (Kim et al., 1993; Mattay and Weinberger, 1999). We 
focused on bilateral pre- and post-central gyri. The proposed 
surface-based approach was applied according to three different statis-
tical thresholds (i.e., pFDR<0.05, punc<0.05, punc<0.001), which repre-
sent the most commonly utilized statistical thresholds in fNIRS-fMRI 
analyses (Poldrack et al., 2008; Tak and Ye, 2014; Yeung, 2018; Yücel 
et al., 2021). 

4.1. Spatial agreement 

The quantitative assessment of spatial agreement of functional acti-
vation is a viable tool for assessing reproducibility across modalities. At 
the subject-level, spatial agreement over contralateral activation be-
tween acfMRI ∩ acfNIRSHbX was moderate-to-substantial, as measured 
with DC (Table 3.1, Table 3.2 and Supplementary Material Table S6). At 
the group-level, considering again the contralateral activation maps, the 
results were more heterogeneous, ranging from substantial DC to slight 
DC agreement when moving from punc< 0.05 as the least restrictive to 
punc< 0.001 as the most conservative, as expected. These results reflect 
the progressive increase in the number of missing acfMRI ∩
acfNIRSHbO2 intersections (ranging from 2 s to 7 subjects out of 18) 
and acfMRI ∩ acfNIRSHbX intersections found at the level of single 
subject analysis (ranging from 3 to 9 subjects; Supplementary material 
at Table S3, S4 and S5). Concerning the ipsilateral activation, both at 
subject and group levels, we found lower DC values as the activation is 
mostly confined to the contralateral hemisphere. Moreover, considering 
a more restrictive statistical threshold, moving from punc < 0.05 to 
punc< 0.001, we found an increasing number of missing acfNIRSHbX 

Fig. 3.3. Group-level block averaged responses to right (top panel) and left hand movement (bottom panel) referred to acfNIRSHbO2 (left column), acfNIRSHbR (central 
column) and acfMRI (right column). Results are referred to a statistical threshold of punc < 0.05. For each task condition the fNIRS and fMRI activation maps are 
reported (t = 10.2 s) together with the signal waveforms of the contralateral neural response. The signals represent the average waveforms of the contralateral and 
ipsilateral pre and post central gyri (blue, red and yellow, green respectively). 
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(see Supplementary Material Table S3, S4 and S5). 
Despite the level of spatial agreement between fMRI and fNIRS sta-

tistical maps being overall substantial, our results showed that fMRI and 
fNIRS are differently affected by statistical threshold levels. Indeed, 
fMRI presents a higher number of acfROIs compared to fNIRS across 
employed thresholds (see Supplementary Materials at Table S3, S4 and 
S5). 

To our knowledge, few studies have accounted for the spatial 
agreement of fNIRS and fMRI measurements over source maps instead of 
only considering the sole correspondence between anatomical land-
marks and fNIRS channel placements. Moreover, current studies have 
employed different metrics to assess this aspect. 

Among them, Cai et al. (Cai et al., 2022) validated the spatial ac-
curacy of a fNIRS image reconstruction algorithm by employing 
thresholded fMRI z-maps to define activated/non-activated regions as 
true positives/negatives and hence compared to fNIRS maps. Another 
work by Eggebrecht et al. (Eggebrecht et al., 2012) revealed comparable 
results between fMRI maps and high-density diffuse optical tomography 
(HD-DOT) maps in terms of voxel-wise localization error and Euclidean 
distance of the center of mass of activation. Successively, they also found 
moderate to substantial DC and high spatial correlation between 
HD-DOT and fMRI when mapping four hierarchical language tasks and 
multiple resting-state networks (Eggebrecht et al., 2014). In addition, 
Yamashita et al. (Yamashita et al., 2016) found a median localization 
error of 6 and 8 mm and spatial-pattern similarity, assessed as Spear-
man’s correlation between HbR vs. fMRI percent signal images, of 0.6 
and 0.4 during hand gripping and right index finger extension tasks. 
Huppert et al. ( Huppert et al., 2017a) performed the image recon-
struction on fNIRS outputs of first-level statistics, hence assessing the 
significance of fNIRS vs. fMRI spatial correlation as cortical depth in-
creases. Pereira et al. (Pereira et al., 2023) found a significant 
group-level spatial correspondence during motor paradigms in terms of 
Spearman’s correlation between fMRI data and maps obtained by using 
subject-specific fNIRS signals as predictors of fMRI data. Other studies 
have also indirectly investigated the spatial agreement between fMRI 
and HD-DOT maps by translating fMRI maps into fNIRS measurement 
space to assess resting state functional connectivity (Duan, Zhang, and 
Zhu, 2012) and compare their temporal dynamics ( Huppert et al., 
2006). 

The proposed surface-based approach allowed for the definition of 
ROIs for directly comparing fNIRS and fMRI over common statistically 
significant cortical areas instead of only considering optodes posi-
tioning. Indeed, most of the early fNIRS-fMRI studies established a 
spatial correspondence between anatomical MRI and fNIRS optode 
positioning (Kleinschmidt et al., 1996; Mehagnoul-Schipper et al., 2002; 
Strangman et al., 2002; Toronov et al., 2003; Toronov et al., 2001). 
Notably, Strangman et al. (Strangman et al., 2002) were also the first to 
propose that fNIRS-fMRI spatial correspondence must consider the 
segmentation of anatomical MRI for providing fNIRS source recon-
struction in a 3D space. Finally, Wagner et al. (Wagner et al., 2021) 
recently suggested that fNIRS and fMRI need to be compared at the 
source level to be viable in clinical contexts. 

Other approaches have considered the definition of data-driven 
ROIs, either spherical or based on thresholding methods. Anwar et al. 
(Anwar et al., 2016) defined a correspondence between the placement of 
fNIRS optodes with respect to 3 mm spherical ROI around most highly 
activated voxels. Cui et al. (Cui et al., 2011) employed a HD-DOT system 
and compared channels with high sensitivity with respect to significant 
fMRI regions. Noah et al. (Noah et al., 2015) proposed a SPM-based 
thresholding and clustering method to define the probability of activa-
tion in fNIRS channels, hence performing fMRI to fNIRS regression to 
assess their correlation. Klein et al. (Klein et al., 2022) recently proposed 
a method for the analysis of fNIRS data according to fMRI-BOLD 
response by considering a 5 mm spherical ROI around the maximum 
peak activation vs. projected channel positions using a balloon inflated 
model. As well, Huppert et al. (Huppert et al., 2006) performed an ROI 

analysis by averaging the nearest neighbor fNIRS channels to significant 
fMRI activation areas. 

Compared to other studies in the literature assessing fNIRS vs. fMRI 
spatial agreement, our work proposes an approach for data integration 
and assessment of both spatial agreement and temporal correlation. The 
main advantage of our approach is the integration of fNIRS-fMRI data in 
a common anatomical space and analysis environment, hence promot-
ing data sharing and facilitating future multimodal studies that require a 
dedicated software package (Yücel et al., 2021). 

4.2. Temporal correlation 

The spatial agreement results follow temporal correlation, which is 
one of the major focuses of current fNIRS-fMRI integration studies. At 
the subject-level, our results indicated a moderate to strong contralateral 
temporal correlation for acfMRI vs. acfNIRSHbR and 
acfMRI vs. acfNIRSHbO2 ,respectively, in line with the observed substan-
tial spatial agreement. These results are emphasized at the group level, 
where an overall strong correlation was found except for right hand 
movements activation at pFDR< 0.05 and punc< 0.001 (Fig. 3.2, Fig. 3.3 
and Supplementary material at Fig. S2). Results for ipsilateral correla-
tions also reflect that which was found in the spatial agreement analysis. 

Our results are in line with the current fNIRS fMRI literature 
reporting moderate to strong temporal correlation between the two 
modalities across motor tasks ( Huppert et al., 2006; Klein et al., 2022; 
Mehagnoul-Schipper et al., 2002; Noah et al., 2015; Strangman et al., 
2002; Toronov et al., 2001). Namely, Toronov et al. (Toronov et al., 
2001) reported a good temporal correlation between fNIRS and fMRI 
signals located in the expected motor areas, while Strangman et al. (G. 
Strangman et al., 2002) found a moderate to strong correlation with 
both HbO2 and HbR. Successively, other studies by Huppert et al. ( 
Huppert et al., 2006), Mehagnoul-Schipper et al. (Mehagnoul-Schipper 
et al., 2002), Noah et al. (Noah et al., 2015) and Klein et al. (Klein et al., 
2022) found moderate to high temporal correlations. Therefore, 
following these results, the proposed integration method can be effec-
tively employed for assessing temporal correlation, as well as intro-
ducing a quantitative spatial agreement assessment. 

4.3. Limitations and future directions 

The core aspects of this work focused on the definition of a surface- 
based approach for integrating and analyzing fNIRS and fMRI data 
within the same anatomical space in a common processing environment 
as well as for performing reliability assessment via vertex-wise analysis. 
However, this study presents some limitations that will be addressed in 
future implementations. 

First, the GLM analysis for computing fNIRS and fMRI statistical 
maps of activation (Section 2.6.1) did not address serial correlation er-
rors, but instead only applied bandpass filtering as a pre-processing step 
(Section 2.5.2). Future applications will need to implement methods for 
dealing with serial correlation errors, such as the adoption of pre- 
coloring and pre-whitening methods (Huppert, 2016), together with 
evaluating their effects over the following reliability assessment (Sec-
tions 2.6.2, 2.6.3 and 2.6.4). 

Second, we considered a motor paradigm and limited the definition 
of acfROIs to only motor regions. Despite its simplicity, this task is 
widely employed in the fNIRS (Kashou et al., 2016; Leff et al., 2011) and 
fMRI literature (Kim et al., 1993; Mattay and Weinberger, 1999) given 
its well-localized and robust activations. To corroborate these results, 
we also repeated DC analysis, both at the subject- and group-level, not 
considering the anatomical constraint and using the whole statistical 
thresholded fNIRS and fMRI functional maps (see Supplementary 
Table S7 and Table S8). However, future work would require consid-
ering other functional tasks to elicit activation over heterogeneous 
functional areas, hence evaluating the proposed approach over different 
acfROIs. 
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Third, we applied our method and reliability assessment over non- 
simultaneous fNIRS and fMRI acquisitions with randomized stimuli 
administration. As a result, our temporal correlation analysis results 
could be biased by the simultaneous block averaging and additional 
spatial constraint due to acfROI computation. A possible solution would 
require to correlate fNIRS and fMRI data over their entire time courses, 
which is not possible at the moment due to our experimental design. 
However, our results are comparable to other fNIRS-fMRI integration 
studies reporting comparable degrees of correlation results with a sim-
iliar motor paradigms ( Huppert et al., 2006; Klein et al., 2022). 

Finally, future applications of this work will require the improve-
ment of cortical layer segmentation, such as employing T1- and T2- 
weighted volumes simultaneously, hence having a more precise fNIRS 
image reconstruction when not employing multiple source-detector 
separations. The present work is addressed to traditional fNIRS optode 
configurations, which, despite being highly employed in research and 
clinical practice, present a reduced spatial resolution compared to other 
techniques such as HD-DOT. This aspect has a major effect on the esti-
mation of the sensitivity profile of fNIRS measurements to cortical 
anatomy and image reconstruction. This effect is even more important 
when considering subject-specific fNIRS analyses, since skull thickness 
and cerebrospinal fluid layer vary with age and highly impact the esti-
mation of sensitivity profile (Custo et al., 2010; Strangman et al., 2014). 
Indeed, the comparison of fNIRS to fMRI over the cortical surface is 
affected by the highly varying sensitivity of the former (Bonilauri et al., 
2023; Zhai, Santosa, and Huppert 2020) with cortical depth, while the 
fMRI sensitivity can be considered almost homogeneous. The rapid drop 
of fNIRS sensitivity with depth might justify the loss of correspondence 
in the deep cortical sulci and should be further investigated in future 
work. 

5. Conclusion 

The proposed spatial agreement assessment, along with the corre-
sponding surface-based approach, can be applied in the context of 
fNIRS-fMRI integration studies. This work promotes the concurrent 
analysis of multimodal data in the same processing environment as 
suggested in the guidelines by (Yücel et al. 2021). 

The ex-post data computation will likely allow to extend fMRI and/or 
fNIRS data analysis to other surface-based neuroimaging techniques, 
such as magnetoencephalography, electroencephalography and HD- 
DOT. In addition, integrating functional and structural cortical parcel-
lations derived from atlas-based anatomies (e.g., Desikan-Killany atlas 
as done in this work) shared by the scientific community promotes the 
reproducibility of analyses across studies. Establishing a correspondence 
between fNIRS and fMRI data promotes the translation of a well- 
established fMRI task into routine fNIRS to assess disease progression 
or monitor treatment response with a more ecologic technology. This is 
particularly convenient when considering longitudinal and rehabilita-
tion settings, where greater flexibility in the utilized task is necessary to 
evaluate treatment efficacy. Finally, fNIRS can perform multiple mea-
surements of cerebral activity in those experimental settings where fMRI 
is not an available or feasible approach. 
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