Millimeter-Wave (mmWave) Vehicle-To-Vehicle (V2V) communications are a key enabler for connected and automated vehicles, as they support the low-latency exchange of control signals and high-resolution imaging data for maneuvering coordination. The employment of mmWave V2V communications calls for Beam Alignment and Tracking (BAT) procedures to ensure that the antenna beams are properly steered during motion. The conventional beam sweeping approach is known to be unsuited for the high vehicular mobility and its large overhead reduces transmission efficiency. A promising solution to reduce BAT signalling foresees the integration of V2V communication systems with on-board vehicle sensors. We focus on a cooperative sensor-assisted architecture for mmWave V2V communications in line of sight, where vehicles exchange the estimate of antenna position and its uncertainty to compute the optimal beam direction and dimension. We analyze and compare different signalling strategies for sharing the information on antenna estimate, evaluating the tradeoff between signalling overhead and performance loss for different position and uncertainty encoding strategies. Main attention is given to differential quantization on both the antenna position and uncertainty. Analyses over realistic urban mobility trajectories suggest that differential approaches introduce a negligible performance loss while significantly reducing the BAT signalling communication overhead.

Signalling Design in Sensor-Assisted mmWave Communications for Cooperative Driving

Ciaramitaro, Giovanni;Brambilla, Mattia;Nicoli, Monica;Spagnolini, Umberto
2023-01-01

Abstract

Millimeter-Wave (mmWave) Vehicle-To-Vehicle (V2V) communications are a key enabler for connected and automated vehicles, as they support the low-latency exchange of control signals and high-resolution imaging data for maneuvering coordination. The employment of mmWave V2V communications calls for Beam Alignment and Tracking (BAT) procedures to ensure that the antenna beams are properly steered during motion. The conventional beam sweeping approach is known to be unsuited for the high vehicular mobility and its large overhead reduces transmission efficiency. A promising solution to reduce BAT signalling foresees the integration of V2V communication systems with on-board vehicle sensors. We focus on a cooperative sensor-assisted architecture for mmWave V2V communications in line of sight, where vehicles exchange the estimate of antenna position and its uncertainty to compute the optimal beam direction and dimension. We analyze and compare different signalling strategies for sharing the information on antenna estimate, evaluating the tradeoff between signalling overhead and performance loss for different position and uncertainty encoding strategies. Main attention is given to differential quantization on both the antenna position and uncertainty. Analyses over realistic urban mobility trajectories suggest that differential approaches introduce a negligible performance loss while significantly reducing the BAT signalling communication overhead.
2023
V2V
beam pointing
beam tracking
mmWave
signalling
sensor-assisted communications
beamwidth adaptation
File in questo prodotto:
File Dimensione Formato  
Signalling_Design_in_Sensor-Assisted_mmWave_Communications_for_Cooperative_Driving.pdf

accesso aperto

: Publisher’s version
Dimensione 2.44 MB
Formato Adobe PDF
2.44 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1247517
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 1
social impact