Industry 4.0 determined the emergence of technologies that enable data-driven production planning and control approaches. A digital model can be used to make decisions based on the current state of a manufacturing system, and its efficacy strictly depends on the capability to correctly represent the physical counterpart at any time. Automated model generation techniques such as process mining can significantly accelerate the development of digital twins for manufacturing systems. However, complex production environments are characterized by the convergence of different material and information flows. The corresponding data logs present multiple part identifiers, resulting in the wrong finding of the system structure with traditional process mining techniques. This paper describes the problem of discovering manufacturing systems with complex material flows, such as assembly lines. An algorithm is proposed for the proper digital model generation, aided by the new concept of object-centric process mining. The proposed approach has been applied successfully to two test cases and a real manufacturing system. The results show the applicability of the proposed technique to realistic settings.

Automated digital twin generation of manufacturing systems with complex material flows: graph model completion

Lugaresi G.;Matta A.
2023-01-01

Abstract

Industry 4.0 determined the emergence of technologies that enable data-driven production planning and control approaches. A digital model can be used to make decisions based on the current state of a manufacturing system, and its efficacy strictly depends on the capability to correctly represent the physical counterpart at any time. Automated model generation techniques such as process mining can significantly accelerate the development of digital twins for manufacturing systems. However, complex production environments are characterized by the convergence of different material and information flows. The corresponding data logs present multiple part identifiers, resulting in the wrong finding of the system structure with traditional process mining techniques. This paper describes the problem of discovering manufacturing systems with complex material flows, such as assembly lines. An algorithm is proposed for the proper digital model generation, aided by the new concept of object-centric process mining. The proposed approach has been applied successfully to two test cases and a real manufacturing system. The results show the applicability of the proposed technique to realistic settings.
2023
Assembly
Digital twin
Discrete event simulation
Manufacturing
Model generation
Process mining
File in questo prodotto:
File Dimensione Formato  
Automated digital twin generation of manufacturing systems with complex material flows graph model completion.pdf

Accesso riservato

: Publisher’s version
Dimensione 1.86 MB
Formato Adobe PDF
1.86 MB Adobe PDF   Visualizza/Apri
0Automated digital twin generation of manufacturing systems with complex material flows graph model completion.pdf

embargo fino al 08/07/2025

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.25 MB
Formato Adobe PDF
1.25 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1245317
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 0
social impact