In the past decade, urban agriculture (UA) has attracted significant atten-tion from urban planners and city managers as a sustainable, nature-based, and smart solution that may generate positive impacts for resilience, self-reliance, and social, economic, and environmental sustainability of cities. UA appears as an effective means to address climate change while also fostering urban transitions to sustain-ability in many ways, such as creating new commons, amenities, ecosystem services, reinventing urbanity, and encouraging community building by growing local food. Since UA is a strategy to support the re-configuration of more sustainable and resilient cities, it can be considered a seedbed for innovation. Based on these premises, the STRutture Agricole MEtropolitane (STRAME) research project aims at defining an innovative interpretation of the urban farming. The research proposes a vision of the UA based on an intermediate scale compared to the more investigated and developed mega-scale of large vertical farming and the microscale of urban gardens. Conceived as an adaptive infrastructure, STRAME—a system based on modular Vertical Farming units—is organized to be translated and applied in different urban and metropolitan scenarios. The “terrain vague” of metropolises (intended as residual urban spaces) and climate change are two challenges—the first of a physical-spatial type and the second environmental-social—in which STRAME wants to build a capillary system of highly efficient agricultural production. STRAME, starting from deep analysis of the background of UA, aims at defining a physical infrastructure integrated with a digital infrastructure (IoT), able of responding to the challenges posed by the agro-industrial chain in densely populated urban contexts. Its core is a system of modular elements to be used for the construction and commissioning of a medium-sized network of inter-connected vertical farming applicable in residual voids and in the open spaces in large residential districts.
Metropolitan Farms: Long Term Agri-Food Systems for Sustainable Urban Landscape
PAGANIN, GIANCARLO;ORSINI, FILIPPO;POLI, MATTEO UMBERTO;VENIS, KONSTANTINOS;MIGLIORE, MARCO
2023-01-01
Abstract
In the past decade, urban agriculture (UA) has attracted significant atten-tion from urban planners and city managers as a sustainable, nature-based, and smart solution that may generate positive impacts for resilience, self-reliance, and social, economic, and environmental sustainability of cities. UA appears as an effective means to address climate change while also fostering urban transitions to sustain-ability in many ways, such as creating new commons, amenities, ecosystem services, reinventing urbanity, and encouraging community building by growing local food. Since UA is a strategy to support the re-configuration of more sustainable and resilient cities, it can be considered a seedbed for innovation. Based on these premises, the STRutture Agricole MEtropolitane (STRAME) research project aims at defining an innovative interpretation of the urban farming. The research proposes a vision of the UA based on an intermediate scale compared to the more investigated and developed mega-scale of large vertical farming and the microscale of urban gardens. Conceived as an adaptive infrastructure, STRAME—a system based on modular Vertical Farming units—is organized to be translated and applied in different urban and metropolitan scenarios. The “terrain vague” of metropolises (intended as residual urban spaces) and climate change are two challenges—the first of a physical-spatial type and the second environmental-social—in which STRAME wants to build a capillary system of highly efficient agricultural production. STRAME, starting from deep analysis of the background of UA, aims at defining a physical infrastructure integrated with a digital infrastructure (IoT), able of responding to the challenges posed by the agro-industrial chain in densely populated urban contexts. Its core is a system of modular elements to be used for the construction and commissioning of a medium-sized network of inter-connected vertical farming applicable in residual voids and in the open spaces in large residential districts.File | Dimensione | Formato | |
---|---|---|---|
2023 Paganin Orsini Migliore Venis Poli.pdf
Accesso riservato
Descrizione: Contributo
:
Publisher’s version
Dimensione
254.82 kB
Formato
Adobe PDF
|
254.82 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.