In many engineering applications, continuous-time models are preferred to discrete-time ones, in that they provide good physical insight and can be derived also from non-uniformly sampled data. However, for such models, model selection is a hard task if no prior physical knowledge is given. In this paper, we propose a non-parametric approach to infer a continuous-time linear model from data, by automatically selecting a proper structure of the transfer function and guaranteeing to preserve the system stability properties. By means of benchmark simulation examples, the proposed approach is shown to outperform state-of-the-art continuous-time methods, also in the critical case when short sequences of canonical input signals, like impulses or steps, are used for model learning.

Kernel-based identification of asymptotically stable continuous-time linear dynamical systems

Formentin, S;
2022-01-01

Abstract

In many engineering applications, continuous-time models are preferred to discrete-time ones, in that they provide good physical insight and can be derived also from non-uniformly sampled data. However, for such models, model selection is a hard task if no prior physical knowledge is given. In this paper, we propose a non-parametric approach to infer a continuous-time linear model from data, by automatically selecting a proper structure of the transfer function and guaranteeing to preserve the system stability properties. By means of benchmark simulation examples, the proposed approach is shown to outperform state-of-the-art continuous-time methods, also in the critical case when short sequences of canonical input signals, like impulses or steps, are used for model learning.
2022
Kernel-based learning
linear identification
continuous-time identification
File in questo prodotto:
File Dimensione Formato  
11311-1235305_Formentin.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.63 MB
Formato Adobe PDF
1.63 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1235305
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 4
social impact