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Abstract
In many engineering applications, continuous-time models are preferred to discrete-
time ones, in that they provide good physical insight and can be derived also from
non-uniformly sampled data. However, for such models, model selection is a hard
task if no prior physical knowledge is given. In this paper, we propose a non-
parametric approach to infer a continuous-time linear model from data, by auto-
matically selecting a proper structure of the transfer function and guaranteeing to
preserve the system stability properties. By means of benchmark simulation exam-
ples, the proposed approach is shown to outperform state-of-the-art continuous-time
methods, also in the critical case when short sequences of canonical input signals,
like impulses or steps, are used for model learning.
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1. Introduction

System identification, the science of modeling dynamical systems from data, is a widely
explored topic (i.a. Ljung & Glad, 2016; Pintelon & Schoukens, 2012). Given the
sampled nature of the measurements, the research community has focused most of its
efforts on discrete-time models.

Methods for both parametric (i.a. Paduart et al., 2010; Pintelon, Guillaume, Rolain,
Schoukens, & Hamme, 1994) and non-parametric models (i.a. Rüdinger & Krenk,
2001; Schoukens, Pintelon, Vandersteen, & Guillaume, 1997; Wellstead, 1981) exist,
working both within the time (i.a. Paduart et al., 2010; Rüdinger & Krenk, 2001) or
the frequency domain (i.a. Pintelon et al., 1994; Schoukens et al., 1997), and devoted to
Linear Time Invariant (LTI) (i.a. Pillonetto & De Nicolao, 2010; Rüdinger & Krenk,
2001), Linear Parameter/Time Varying (LPV/LTV) (i.a. Darwish, Cox, Proimadis,
Pillonetto, & Tóth, 2018; Golabi, Meskin, Toth, & Mohammadpour, 2017; Shi, Law,
& Xu, 2009) or non-linear (i.a. Formentin, Mazzoleni, Scandella, & Previdi, 2019;
Mazzoleni, Formentin, Scandella, & Previdi, 2018; Mazzoleni, Scandella, Formentin,

CONTACT Matteo Scandella. Email: m.scandella@imperial.ac.uk



& Previdi, 2018; Mazzoleni, Scandella, & Previdi, 2019; Pillonetto, Quang, & Chiuso,
2011) systems.

Nonetheless, discrete-time models present several drawbacks (see Garnier, 2015;
Garnier & Young, 2012, for more details), e.g., they work only with the sampling
frequency of the dataset, they cannot handle non-uniformly sampled data, they cannot
easily cope with stiff systems and deriving physical insight is difficult.

Such issues can be tackled by switching to continuous-time models (Wang &
Gawthrop, 2001). In fact, since such models are not intrinsically defined by a cer-
tain sampling frequency, the above problems are automatically solved. In this setting,
specific algorithms and optimization schemes have been developed during the years
for both regularly (i.a. Garnier, 2015; Garnier & Wang, 2008; Padilla, Garnier, Young,
Chen, & Yuz, 2019; Young, 2015) and irregularly sampled datasets (i.a. F. Chen,
Agüero, Gilson, Garnier, & Liu, 2017; F. Chen, Garnier, & Gilson, 2015).

Most of the aforementioned methods are parametric and require the prior knowledge
of the system complexity. When the system order is not known, complexity measures
such as the Young Information Criteria (YIC) (Young, 2011) can be employed.

However, complexity criteria such as YIC select the model shape among a finite set
of possible structures. This was one of the main reasons for the introduction of non-
parametric kernel methods in system identification, where model complexity is tuned
in a continuous way. Non-parametric approaches were originally introduced by Pil-
lonetto and De Nicolao (2010) for continuous-time LTI systems, where Bounded-Input
Bounded-Output (BIBO) stability of the identified model is guaranteed by the devel-
oped stable-spline kernel. Since then, identification approaches that rely on kernels
have been successfully devised for other continuous-time problems (T. Chen, 2018b;
Lataire, Pintelon, Piga, & Tóth, 2017).

Nonetheless, the approach in Pillonetto and De Nicolao (2010) is difficult to imple-
ment for practical use, due to the need of analytically deriving the kernel matrix. In
continuous time, this involves the integrals of the input signal u(t) and the kernel func-
tion k(·, ·). As noticed in Dinuzzo (2015), those integrals can be computed in closed
form only if the input signal is known to have a sufficiently simple expression. For this
reason, the discrete-time version of kernel methods is mostly used in practice, followed
by the identification of a high-order Finite Impulse Response (FIR) model using the
obtained non-parametric estimate. If a continuous-time parametric transfer function
is needed, then the user has to resort to a two-steps approach: (i) perform an order
reduction of the high-order FIR model; (ii) convert the discrete-time reduced model
to a continuous-time one.

In this work, we provide a novel approach for direct non-parametric continuous-
time identification of the transfer function of asymptotically stable LTI systems. The
method is indeed inspired to the work of Pillonetto and De Nicolao (2010), but it
directly computes the estimate of the transfer function of the system, thus not needing
to compute the impulse response first and then project it onto a suitable system of
the Laplace domain. In particular, the proposed approach:

• automatically selects the best transfer function complexity from the available
data;
• can be used with practically low-exciting signals like the Dirac impulse or the

step1;

1Here, the notion of “low excitation” is not referring to the spectral density of the theoretical impulse and

step signals, which have a flat spectrum, but to the spectrum of their finite time realizations, which are known
not to share the same excitation properties.
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• guarantees the asymptotic stability of the identified transfer function. Note that
the method of (Pillonetto & De Nicolao, 2010) only ensures the BIBO stability of
the impulse respone. Moreover, this property is not guaranteed to be preserved
during the transformation of the impulse response into a transfer function.

The remainder of this paper is as follows. Section 2 briefly reviews the kernel-based
approach for continuous LTI system identification of (Pillonetto, Dinuzzo, Chen, De
Nicolao, & Ljung, 2014). Furthermore, a novel general parametrization of stable-spline
kernel is presented. Section 3 illustrates the estimation method proposed in this paper.
Then, the developed approach is compared with the CONTSID toolbox (Garnier &
Gilson, 2018; Pascu, Garnier, Ljung, & Janot, 2019) in Section 4. The paper ends
with some concluding remarks.

2. Non-parametric impulse response estimation

In this section:

• we review the basics of kernel methods for LTI system identification;
• we introduce the stable-spline kernel;
• we provide a novel general parametrization of the stable-spline kernel.

2.1. Review of kernel methods and problem statement

Consider the continuous causal Single-Input Single-Output (SISO) LTI system with
impulse response ğ : R→ R. Then, the input/output relation of the system is

y (t) = [ğ ? u] (t) =

+∞∫
0

ğ (ξ)u (t− ξ) dξ, (1)

where u : R+ → R and y : R+ → R are, respectively, the input and the output signals,
and ? denotes the convolution operator. In the Laplace domain, this relation becomes

Y (s) = Ğ (s)U (s) , (2)

where, being L the Laplace operator, U (s) = L [u] (s), Y (s) = L [y] (s) and Ğ (s) =
L [ğ] (s) is the transfer function of the system.

Suppose to have at disposal a dataset containing n ∈ N \ {0} noisy measurements,
obtained with an experiment on the plant

D = {(ti, yi) , 1 ≤ i ≤ n} , (3)

distributed according to the probabilistic model

yi = [ğ ? u] (ti) + ei, i = 1, . . . , n (4)

where ei ∼ N
(
0, η2

)
are independent and identically distributed output-error Gaus-

sian noises and u : R→ R is the known input excitation used during the experiment.
For the remainder of the manuscript, we will assume that the time instants ti are in
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chronological order, i.e. ti ≥ ti−1, i = 2, . . . , n and the excitation signal u (t) is applied
to the plant at the time instant d ∈ R, i.e. u (t) = 0, ∀t < d. We will, also, suppose
that all the time-instants ti are strictly greater than d because, thanks to the causality
of the system, all others time instants do not contribute to the output computation,
and they can be discarded from the dataset.

The aim is now to estimate the (continuous-time) impulse response ğ of the SISO

LTI system Ğ using the noisy dataset D and the knowledge of the shape of the exci-
tation u(t) (in other words, the analytic expression of u(t) is supposed to be exactly
known). Following the rationale developed by Pillonetto and De Nicolao (2010), we
can estimate ğ by

ĝ = arg min
g∈Hk

{J (g)} ,

J (g) =

n∑
i=1

(
yi − [g ? u] (ti)

)2
+ τ ‖g‖2H ,

(5)

where H is a Reproducing Kernel Hilbert Space (RKHS) with kernel k : R+×R+ → R,
τ > 0 controls the regularization strength and ‖·‖H is the induced norm of the space
H. We suppose that the kernel k depends on some hyper-parameters ρ ∈ Rnρ×1. The
first term of the cost function J in (5) is a loss term that becomes smaller when the
model has a good fit on the dataset, while the second one is a regularization term that
penalizes more complex models.

As explained by Dinuzzo and Schölkopf (2012), this estimator can be written as

ĝu (t) =

n∑
i=1

ciĝ
u
i (t) , (6)

where the dependency on the input shape u(t) is highlighted and

ĝui (t) =

∞∫
0

u (ti − ξ) k (t, ξ) dξ. (7)

The coefficients vector c = [c1, . . . , cn]> ∈ Rn×1 can be found by solving the linear
system

O (O + τIn) c = Oy>, (8)

where y = [y1, . . . , yn] ∈ R1×n and O ∈ Rn×n is a symmetric positive-semidefinite
matrix whose (i, j) element is ou (ti, tj), given by

ou (ti, tj) =

+∞∫
0

+∞∫
0

u (ti − ψ)u (tj − ξ) k (ψ, ξ) dξ dψ. (9)

The computation of (7) and (9) is the main obstacle that makes difficult to implement
kernel methods in continuous time. We again remark here that the integrals in (9) can
be computed analytically for certain classes of kernels and inputs signals; otherwise,
they can be approximated numerically, see Dinuzzo (2015). In this work, we derive a
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closed-form solution for two widely used input signals in the control community, i.e.
impulse and step inputs, by relying on the so-called stable-spline kernel.

The tuning of the hyper-parameters of the method ζ =
[
ρ>, τ

]> ∈ Rnζ×1 can be
performed by resorting to its Bayesian interpretation (Pillonetto et al., 2014).

The model described in (4) gives the likelihood distribution p (y|g, ζ), where g is a
generic impulse response function. Imposing a Gaussian stochastic process prior p (g|ζ)
on the impulse response allows obtaining a posterior p (g|y, ζ), whose expected value is
equal to the estimator (6). From this different point of view, it is possible to compute
the marginal likelihood density function as

p (y|ζ) =

∫
p (y|g, ζ) p (g|ζ) dg = N

(
y>
∣∣∣0n×1,O + τIn

)
. (10)

This distribution represents the likelihood to have a certain set of measurements y
given a certain value of the hyper-parameters ζ. For this reason, it is possible to select
the vector ζ by searching the one that maximizes the likelihood to obtain the set of
measurements at our disposal. Therefore:

ζ̂ = arg min
ζ∈Rnζ

{
y (O + τIn)−1 y> + log det (O + τIn)

}
(11)

where, instead of the direct maximization of p (y|ζ), the negative log version of p (y|ζ)
is minimized for convenience and computational reasons.

2.2. Stable-spline kernel

The performance of the estimator ĝu heavily depends on the employed kernel. In
particular, most of them are not suitable for this application since they define RKHS
containing functions that correspond to unstable systems. To solve this problem, the
so-called stable kernels can be used (Pillonetto et al., 2014). An example of this kind
of kernel is the stable-spline one kq : R+ × R+ → R that is defined as:

kq (a, b) = λsq

(
e−βa, e−βb

)
, (12)

where q ∈ N \ {0} is the stable-spline order, β and λ are two strictly positive scalar
hyper-parameters and sq : [0, 1] × [0, 1] → R is the regular spline kernel of order
q (Wahba, 1990), i.e.

sq (a, b) =

1∫
0

Gq (a, x)Gq (b, x) dx, (13)

where

Gq (a, x) =
1

(q − 1)!

{
(a− x)q−1 if a ≥ x
0 if a < x

. (14)

Notice that the λ hyper-parameter is related to the static gain of the system at hand,
while β defines its bandwidth. In the literature it is possible to find other stable
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kernels like the continuous DC kernel (T. Chen, Ohlsson, & Ljung, 2012). T. Chen
(2018b) presented a detailed analysis on how to select the right stable-kernel for system
identification.

In this manuscript, the focus will be on the stable-spline kernel (Pillonetto et al.,
2014) because they are widely studied and used. In particular, the stable spline are used
in a wide range of applications. For example, other than the LTI systems’ identification,
they can also be used for hybrid systems’ identification (Pillonetto, 2015), for blind
systems’ identification (Bottegal, Risuleo, & Hjalmarsson, 2015), for Hammerstein sys-
tems’ identification (Risuleo, Bottegal, & Hjalmarsson, 2015), for identification with
missing data (Pillonetto, Chiuso, & De Nicolao, 2019), for robust identification Pil-
lonetto, Carè, and Campi (2018) and with other type of regularizations (Aravkin,
Burke, & Pillonetto, 2018). Furthermore, the stable splines have been extensively
studied and their behavior is well documented (T. Chen et al., 2016; Pillonetto, 2018).
It has also been shown that the DC kernel and the TC kernel, two other widely used
kernels in these settings, are strongly related to the stable splines (T. Chen, 2018a).

In particular, a generic order stable-spline kernel can be represented as follows.

Proposition 1 (Spline kernels). The spline kernel sq : [0, 1] × [0, 1] → R of order q
and the stable-spline kernel kq : R+ × R+ → R of order q can be written, respectively,
as:

sq (a, b) =

q−1∑
h=0

γq,h

{
a2q−h−1bh if a ≤ b
b2q−h−1ah if a > b

, (15)

kq (a, b) = λ ·
q−1∑
h=0

γq,h

{
e−β[(2q−h−1)a+hb] if a ≥ b
e−β[(2q−h−1)b+ha] if a < b

, (16)

where

γq,h =
(−1)q+h−1

h! (2q − h− 1)!
(17)

Proof. The proof is reported in the appendix on page 17. �

Remark 1. From Proposition 1, we can see that the stable-spline kernel of order q
is a weighted sum of q negative exponential terms. For this reason, the stable-spline
kernel is easily computable for every order q. This novel formulation allows treating q
as an additional hyper-parameter, i.e. ζ = [λ, β, q, τ ]. Thus, it is possible to obtain a
better data-fit with respect to fixing the spline order value in advance. In this case, the
optimization of (11) becomes a mixed real-integer optimization problem that requires
suitable techniques. However, a greedy (sub-optimal) solution for this problem is to
select the order q with an exhaustive search from a certain pool of values.

The estimator ĝu, as defined in (6), gives a continuous-time non-parametric repre-
sentation of the system, in terms of its impulse response. For practical applications,
however, like control design and behavior analysis, this representation is not as useful
as the transfer function one. To achieve this, the current practice consists of two steps
procedure (T. Chen et al., 2012; Mazzoleni, Scandella, et al., 2018):

1. perform a discrete-time non-parametric estimate of the system impulse response
by fitting a high-order FIR model on the available dataset;
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2. convert the discrete-time transfer function to a continuous-time one.

The next section presents the proposed method, where a direct procedure is proposed
to estimate the continuous-time system transfer function.

3. Asymptotically stable transfer function estimation

This section presents the proposed approach for continuous-time system identification.
Specifically, we:

• explain the main rationale of the method;
• show the method using impulse inputs;
• exemplify the method using step inputs.

3.1. Continuous-time transfer function identification

To start with, consider the following proposition that relates estimated impulse re-
sponse with the transfer function of the system:

Proposition 2 (TF expression). Given the non-parametric estimator ĝu, as explained
in (6), of an LTI system, the corresponding transfer function is

Ĝu (s) =

n∑
i=1

ciĜ
u
i (s) , (18)

where

Ĝui (s) =

ti∫
d

u (τ)K (s; ti − τ) dτ, (19)

and

K (s;x) =

∞∫
0

k (t, x) e−st dt. (20)

Proof. The proof is reported in the appendix on page 22. �

From the above result, it is possible to note that the estimated transfer function is
composed of the convolution of two terms: the first one, u (x), depends only on the
shape of the excitation signal while the second one, K (s; ti − x), depends only on the
kernel used.

For the stable-spline kernel of generic order q, it is possible to compute a more
informative formulation thanks to the following proposition.

Proposition 3 (Stable spline TF expression). Let the kernel be a stable-spline kq of
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order q and ui (t) = u (ti − t). The identified transfer function can be written as

Ĝu (s) = λ

[
q−1∑
h=0

Quq,h (s) +Hu
q (s)

]
, (21)

where

Quq,h (s) =
γq,h

s+ βh
·

(
n∑
i=1

ci ·Aui (β (2q − h− 1))

)
(22)

Hu
q (s) =

(−1)q β2q−1∏2q−1
i=0 (s+ βi)

·

(
n∑
i=1

ci ·Aui (s+ β (2q − 1))

)
(23)

and

Aui (x) = L [ui] (x) . (24)

Proof. The proof is reported in the appendix on page 23. �

The expression (21) represents the estimated transfer function as a sum of q + 1
transfer functions. The first q of them have one real pole located in a multiple of −β
and a gain that depends on the coefficients c, the hyper-parameters λ and β, the spline
order and the shape of the input signal u(t). The last one has 2q − 1 real poles that
are multiple of −β and, eventually, other poles that depend on the shape of the input
u (t). In particular, the term Aui (s+ β (2q − 1)) can have some poles or zeros that will

be added to Ĝu.
The following theorem relates choice of the input signal u(t) with the asymptotic

stability of the identified model.

Theorem 1 (Excitation for stability). If the experiment excitation u(t), used to collect
the dataset D, is such that the terms

Aui (s+ β (2q − 1)) , i = 1, . . . , n (25)

are functions whose poles have a negative real part, then the identified transfer function
Ĝu (s) is asymptotically stable.

Proof. The proof is reported in the appendix on page 26. �

From this Theorem, it is clear that the terms (25) have an important role in the
identification procedure and on the stability of the identified model. Furthermore,
note that the identified model is always at least BIBO stable because the stable-spline
kernel is a stable kernel.

The proposed identification method is described in Algorithm 1. In particular, the
following quantities, that depend on the excitation signal used for the experiment and
on the employed kernel, have to be defined:

• the derived kernel ou as described in (9);

• the identified transfer function Ĝu as described in Proposition 2. If the kernel
used is a stable-spline, then the Proposition 3 can be employed.
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Algorithm 1: Asymptotically stable transfer function estimation

Input: The dataset D
Input: A way to compute ou given ζ = [λ, β, τ, q] and two time instants

Input: A way to compute Ĝu given ζ = [λ, β, τ, q] and c

1 Discard the part of the dataset D corresponding to time instants ti ≤ d
2 Find the optimal hyper-parameters ζ̃ by minimizing equation (11)

3 Compute the matrix O using the hyper-parameters ζ̃
4 Compute a valid solution c of the linear system (8)

5 Compute Ĝu given ζ̃ and c

Output: The transfer function Ĝu

The next sections applies Algorithm 1 to the impulse and step input signals. These
two signals are widely used in practical applications due to the simplicity of the ex-
perimental setup needed for their use on the plant. Furthermore, some of the most
common system identification techniques, such as PEM (Ljung & Glad, 2016) or FRF
identification (Pintelon & Schoukens, 2012), require more complex input signals to
work effectively (e.g. white noise or multisine signals).

It is also important to note that the same methodology can be extended to more
complex input signals such as polynomials, sinusoidals or combination of all the above.
This extension is left to future research.

Remark 2. The computational complexity of the proposed method does not differ
significantly with respect to the traditional kernel methods, because the most time-
consuming task is the computation of the coefficients c. The computation of this task
is widely studied in the literature in both computational and memory complexities
(Rudi, Camoriano, & Rosasco, 2015; Rudi, Carratino, & Rosasco, 2017; Scandella,
Mazzoleni, Formentin, & Previdi, 2020).

3.2. Identification using impulse response data

Consider the case where the input signal is a Dirac impulse, applied at the time instant
d ∈ R, i.e.

u (t) = imp (t) = δ (t− d) . (26)

In this case we have

impi (t) = imp (ti − t) = δ (ti − t− d) = δ (t− (ti − d)) . (27)

Therefore, since ti > d, we have

Aimp
i (x) = L [impi] (x) = e−x(ti−d) (28)

Thus, it is straightforward to check the condition of Theorem 1. In particular, we have:

Aimp
i (s+ β (2q − 1)) = e−(s+β(2q−1))(ti−d) = e−β(2q−1)(ti−d) · e−s(ti−d). (29)
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This is an input-output delay with a certain gain. Therefore, it is asymptotically stable
and the required condition is respected for every value of the hyper-parameters and
for every time instant ti > d. Furthermore, applying Theorem 2 and using (28), we

can compute the identified transfer function Ĝimp, as

Ĝimp (s) = λ

[
q−1∑
h=0

Qimp
q,h (s) +H imp

q (s)

]
(30)

Qimp
q,h (s) =

γq,j

s+ βh

n∑
i=1

cie
−β(2q−h−1)(ti−d) (31)

H imp
q (s) =

(−1)q β2q−1∏2q−1
i=0 (βi+ s)

n∑
i=1

cie
−β(2q−1)(ti−d) · e−s(ti−d) (32)

The transfer function H imp
q (s) is not rational. In particular, the numerator is composed

by a sum of weighted input-output delays. To highlight this fact, we can define

T imp
q (s) =

n∑
i=1

cie
−β(2q−1)(ti−d) · e−s(ti−d) (33)

in order to isolate the non-rational part of H imp
q (s), i.e.

H imp
q (s) =

(−1)q β2q−1∏2q−1
i=0 (βi+ s)

T imp
q (s) . (34)

Remark 3. Non-rational transfer functions are difficult to manage and, in general,
classical dimensionality reduction algorithms, such as the balance reduction (Varga,
1991), does not work on this type of models. For these reasons, it is useful to develop

a way to find a rational approximation T̃ imp
q (s) of T imp

q (s). This is hereby achieved
using a Padé approximant (Baker & Graves-Morris, 1996). In particular, a specialized

approximant for T imp
q (s) of order 25 was developed following the rationale described

by Baker and Graves-Morris (1996).

In order to implement the proposed identification procedure, it is also necessary to
compute the derived kernel (9) in the specific case at hand. For this case (i.e. impulse
input signal and stable-spline kernel), we have

oimp
q (ti, tj) = λ

q−1∑
h=0

γq,h

{
e−β[(2q−h−1)a+hb] if a ≥ b
e−β[(2q−h−1)b+ha] if a < b

. (35)

3.3. Identification using step response data

Consider now the case where a step input is applied at the time instant d ∈ R, i.e.

u (t) = step (t) =

{
1 if t ≥ d
0 if t < d

. (36)
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In this case we have

stepi (t) = step (ti − t) =

{
1 t ≤ ti − d
0 t > ti − d

(37)

Therefore, since ti > d, we have

Astep
i (x) = L [stepi] (x) =

1

x
−
e−x(ti−d)

x
=

1− e−x(ti−d)

x
(38)

Therefore, it is possible to check the condition of Theorem 1. In particular, we have:

Astep
i (s+ β (2q − 1)) =

1− e−(s+β(2q−1))(ti−d)

s+ β (2q − 1)
(39)

=
1

s+ β (2q − 1)
− e−s(ti−d) ·

e−β(2q−1)(ti−d)

s+ β (2q − 1)
. (40)

This is a sum of two transfer functions (the second one with an input-output delay)
that share the same pole in

p = −β (2q − 1) . (41)

Since q ∈ N, q ≥ 1 and β > 0, this pole is strictly negative for every value of the
hyper-parameters and the theorem hypothesis is respected.

Applying Theorem 3 and using (38), we can to compute the identified transfer

function Ĝstep

Ĝstep (s) = λ

[
q−1∑
h=0

Qstep
q,h (s) +Hstep

q (s)

]
(42)

Qstep
q,h (s) =

γq,h
∑n

i=1 ci
(
1− e−β(2q−h−1)(ti−d)

)
β (2q − h− 1) (s+ βh)

(43)

Hstep
q,h (s) =

(−1)q β2q−1

(s+ β · (2q − 1))
∏2q−1
i=0 (βi+ s)

·

(
n∑
i=1

ci − T step
q (s)

)
(44)

T step
q (s) =

n∑
i=1

cie
−β(2q−1)(ti−d) · e−s(ti−d) (45)

Again, we can note that the transfer function Hstep
q (s) contains a non-rational term

T step
q (s) that also appears in the identified transfer function obtained using a Dirac

impulse as excitation signal. Following the same rationale used in Section 3.2, this
non-rational term is approximated using a specialized Padé approximant as explained
in Remark 3. The derived kernel (9) in this specific case (i.e. step input signal and
stable-spline kernel) reads as

ostep (ti, tj) =

q−1∑
h=0

γq,h

{
wh (ti − d, tj − d) if ti ≥ tj
wh (tj − d, ti − d) if ti < tj ,

(46)
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where the term wh (a, b), when h = 0, is equal to

w0 (a, b) = 2 ·
1− e−βb(2q−1)

β2 (2q − 1)2 − b ·
e−βa(2q−1) + e−βb(2q−1)

β (2q − 1)
; (47)

instead, for h > 0, wh (a, b) is equal to:

wh (a, b) = 2 ·
1− e−βb(2q−1)

β2 (2q − h− 1) (2q − 1)
+

−
e−βa(2q−h−1)

(
1− e−βhb

)
β2h (2q − h− 1)

+
e−βb(2q−1)

(
1− eβhb

)
β2h (2q − h− 1)

. (48)

4. Simulation examples

In the last decades, continuous-time system identification was studied in detail by Gar-
nier (2015); Garnier and Wang (2008). The most recent methods are implemented in
the CONTSID toolbox (Garnier & Gilson, 2018; Pascu et al., 2019). This section shows
simulation results, where we:

• formulate the simulation setup;
• perform identification on benchmark systems using impulse and step inputs,

using the proposed method;
• compare the Simple Refined Instrumental Variable (SRIVC) method (Garnier,

2015; Young, 2011) from the literature with the proposed approach;
• compare the proposed method with the current two-step procedure that first

identifies a discrete-time model and then converts it to a continuous-time one,
described at the end of Section 2;
• evaluate the sensitivity of the proposed method to a model order reduction pro-

cedure.

4.1. Simulation setup

The proposed method is tested on three different asymptotically stable LTI systems:

G1 (s) =
27

20
·

− 2000s3 − 3600s2 − 2095s− 396

1350s4 + 7695s3 + 12852s2 + 7796s+ 1520
(49)

G2 (s) = 1600 ·
− 4s+ 1

s4 + 5s3 + 408s2 + 416s+ 1600
(50)

G3 (s) =
1

2
·

− 30254s3 − 156761s2 − 328016s− 888265

5000s4 + 82598s3 + 327672s2 + 1175044s+ 1464739
(51)

Figure 1 depicts the magnitude Bode diagrams of the benchmark examples.
The first model G1 (s) behaves like a low-pass filter with a negative gain and it

generates a smooth impulse and step responses. Vice-versa the third model G3 (s)
produces an oscillating responses. Therefore, these two models are chosen to represent
these two opposite scenarios. Lastly, the second model G2 (s) is the Rao-Garnier

12



benchmark, developed by Garnier (2015); Rao and Garnier (2002), a very common
benchmark for continuous system identification.

Figure 1. Bode diagrams of the three example systems. From left to right: G1 (s), G2 (s) and G3 (s).

In the next parts of this section, the following methodologies are compared:

A. The SRIVC algorithm, as implemented in the CONTSID toolbox, with the knowl-
edge of true number of poles and zeros of systems.

B. The SRIVC algorithm where the number of zeros and poles is selected between
1 and 5 using the YIC (Young Information Criterion, see Young, 2011, for more
details).

C. The two steps procedure that first identifies a discrete-time model and then
converts it to a continuous-time one. In particular, the identification step is
performed using the function impulseest of the Matlab System identification
Toolbox, using a cubic stable-spline for the regularization. The conversion step
is performed using the d2c function of the Matlab Control System toolbox, using
the Tustin method.

D. The proposed algorithm, with a regularly sampled dataset and the stable-spline
kernel, with order q chosen in the set {1, 2, 3}.

E. The proposed algorithm, with an irregularly sampled dataset and the stable-
spline kernel, with order q chosen in the set {1, 2, 3}. The time instant are sam-
pled uniformly.

F. The proposed algorithm, with an irregularly sampled dataset and the stable-
spline kernel, with order q chosen in the set {1, 2, 3}. The time instant are sam-
pled from a distribution skewed towards the beginning of the experiment.

The output of the true model is compared with the estimated one on a test dataset,
obtained using a random white Gaussian noise with 5 Hz of bandwidth as excitation
signal. Both input and output are sampled for 1000 s with a sampling frequency of
200 Hz. Then, the performance is computed according to the following fit index

Fit =

(
1−

∑nv
t=1 (yt − ŷt)2∑nv

t=1 (yt −
∑nv

t=1 yt)
2

)
· 100%, (52)

where nv is the length of the obtained dataset, yt and ŷt, with t = 1, . . . , nv, are,
respectively, the samples of the true and estimated responses.

4.2. Identification performance

To evaluate the performance of the five methods previously explained, a Monte Carlo
simulation was performed with m = 200 runs. In particular, given the input u =

13



System T η2
imp η2

step

G1 (s) 4 s 6.97 · 10−2 7.46 · 10−2

G2 (s) 12 s 7.37 · 10−1 3.69 · 10−1

G3 (s) 3 s 7.56 · 10−2 5.30 · 10−2

Table 1. Parameters of the simulation tests for the benchmark models.

{imp, step}, the m different datasets are sampled as

ei ∼ N
(
0, η2

u

)
, i = 1, . . . , n (53)

yi = ru (ti) + ei, i = 1, . . . , n (54)

where n = 250, ηimp and ηstep for each system as reported in Table 1 and ru is the
response of the system to the input u. The noise variances ηimp and ηstep are selected
to have Signal-to-Noise-Ratio (SNR) of about 5. The time-instants ti are sampled in
three different ways:

• For the methods A., B., C. and D., they are sampled regularly.

ti =
T · i
n

; (55)

• For the method E., they are sampled uniformly

ti ∼ U (0, T ) ; (56)

• For the method F., they are sampled from the following distribution

bi ∼ B (1, 3.5) (57)

ti = T · bi (58)

where T changes for each system as reported in Table 1.
Note that the methods A., B. and C. cannot be applied using an impulse excitation

(due to the difficulty of practically obtaining a sampled version of this input2) and
irregularly sampled data.

The fit index (52) is then computed for the m different datasets for each system
and for both impulse and step inputs. Results are shown in Figure 2 for u = imp and
in Figure 3 for u = step, using the classical boxplot notation explained in details in
(Velleman & Hoaglin, 1981, Chapter 3).

From these plots, it is clear that the proposed method outperforms the most com-
monly used procedure for continuous-time system identification in these settings. It
is important to note that the methods A., B. and C. require a persistently exciting
input signal instead of a low-exciting one, like those used in these experiments. It can
also be noted that the SRIVC algorithm has worse performance when the true system
order is known (method A.) with respect to the case where the order is estimated

2In the case of experiments with impulsive input, one solution to perform system identification is to leverage
output data by using subspace methods.
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Figure 2. Performance of the considered methodologies on the three selected systems using impulse response

data.

from the dataset (method B.). This is due to the fact that some modes of the system
are completely hidden in the measured output data, due to the high noise level, see
Figure 4. However, the proposed method (method D.) overcomes the limitations of the
other methods thanks to a flexible way to select the model order and the specialization
on the low-exciting input signals employed.

Furthermore, using a uniformly sampled dataset (method E.) the performance does
not change significantly with respect to method D.. Instead, using a skewed distribu-
tion (method F.), the performance varies. In particular, using a step excitation they
tend to increase and with an impulse input they decrease. The reason behind the latter
fact needs further investigation and we leave it for future work.

To further verify these conclusions, the same experiment was repeated on 200 ran-
domly generated asymptotically stable systems of order 6. In particular, the datasets
are generated as reported in (53) and (54) where n = 500, T is equal to the settling
time of the system and η2

u is selected in such a way that the SNR is 10. Then, the
performance are computed with the fit index described in (52), on a test dataset gen-
erated in the same way as described before. The obtained results for both impulse and
step input are shown in Figure 5.

4.3. Sensitivity to dimensional reduction

Depending on the estimated stable-spline order q, the identified transfer function could
turn out to be too complex. This section evaluates how dimensionality reduction pro-
cedures affect the final model estimate. Here, we employ the Balance Reduction algo-
rithm proposed by Varga (1991).

Consider the case of identification of the benchmark system G2 (s) using impulse
response data, as described in Section 4.2. Here, the Monte Carlo simulation returned
m = 200 identified models. Let ni be the order of the i-th identified model and
σi1 ≥ . . . ≥ σini be the singular values of its Hankel matrix. Then, the model can be
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Figure 3. Performance of the considered methodologies on the three selected systems using step response

data.

reduced to the order

wi = max
{

1, . . . , pi
}

(59)

s.t.

q∑
j=1

σij ≤ λ ·
pi∑
j=1

σij (60)

where λ ∈ [0, 1] is the desired level of reduction. It is straightforward to see that
smaller values of λ lead to smaller orders wi and vice-versa.

Figure 7 depicts the bar diagram of the non-reduced orders pi (in the first row) of
the identified models and the reduced order wi at different level of reduction λ (the
true system G2 (s) has order 4). Here, it is possible to note that, even if the pro-
posed method tends to generate complex dynamics, such models are characterized by
very redundant dynamical modes. Therefore, their order can be significantly reduced
without neglecting important dynamics. This behavior is also confirmed in Figure 6,
where it is possible to see the performance of the reduced model on the test dataset
as compared to the non-reduced models.

5. Concluding remarks

This paper introduced a novel black-box non-parametric continuous-time LTI iden-
tification technique that employs the RKHS properties. The proposed methodology
directly identifies a transfer function model, can work with irregularly sampled data-
points and guarantees the asymptotically stability of the identified system. The method
showed good performance when employed with low-exciting input signals, such as the
impulse or the step (vastly used in practice) as compared to the approach proposed
of (Garnier, 2015; Garnier & Gilson, 2018). Furthermore, a general parametrization of
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Figure 4. Behavior of the SRIVC method with known model order (method A.) when the noise in the mea-

surements hides a high-frequency low-amplitude resonance. (Left) Time-domain true response and noisy data.

(Right) true magnitude Bode diagram and estimated ones on different noise realizations.

the stable-spline kernel is derived, that permits to treat the spline order as an addi-
tional tunable hyper-parameter. Future research will be devoted to the development
of the proposed method with more general excitation signals and to the experimental
validation of the approach on a real-world case study.

Appendix A. Proofs

Proof of Proposition 1. Firstly, we can note that the term Gq (a, x)Gq (b, x) is
equal to zero when a < x ∨ b < x, therefore

Gq (a, x)Gq (b, x) =
(a− x)q−1 (b− x)q−1

((q − 1)!)2

{
1 if x ≤ min (a, b)

0 if x > min (a, b)

following this fact, the integral (13) can be truncated to min (a, b):

sq (a, b) =

min(a,b)∫
0

(a− x)q−1 (b− x)q−1

((q − 1)!)2 dx

Let us, now, focus on the case where the first argument of the kernel is greater
or equal to the second, i.e. a ≤ b and min (a, b) = a. Here, thanks to the change of
variable y = a− x, it is possible to write

sq (a, b) =
1

((q − 1)!)2

0∫
a

−yq−1 (b− (a− y))q−1 dy

=
1

((q − 1)!)2

a∫
0

(
(b− a) y + y2

)q−1
dy.
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Figure 5. Performance of the considered methodologies on randomly selected systems. The plot shows the
results using impulse response data (left) and step response data (right).

The term inside the integral can be simplified using the binomial theorem:

sq (a, b) =
1

((q − 1)!)2

a∫
0

q−1∑
i=0

(
q − 1

i

)
((b− a) y)q−i−1 (y2

)i
dy

=
1

((q − 1)!)2

q−1∑
i=0

(
q − 1

i

)
(b− a)q−i−1

a∫
0

yq+i−1 dy

Now, the integral can be solved and the expression can be rewritten as

sq (a, b) =
1

((q − 1)!)2

q−1∑
i=0

(
q − 1

i

)
·

(b− a)q−i−1 aq+i

q + i

To further simplify this formulation, we can employ the binomial theorem a second
time for the term

(b− a)q−i−1 =

q−i−1∑
j=0

(
q − i− 1

j

)
bj (−a)q−i−1−j ,

obtaining

sq (a, b) =

q−1∑
i=0

q−i−1∑
j=0

αq (i, j) · a2q−j−1 · bj
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Figure 6. Performance on the test dataset using impulse response data for the system G2 (s), for different

levels of dimensionality reduction.

where

αq (i, j) =

(
q − 1

i

)(
q − i− 1

j

)
(−1)q−i−j−1

((q − 1)!)2 (q + i)

In order to remove one of the two summations, we note that

sq (a, b) =

q−1∑
i=0

q−1∑
j=0

α̃q (i, j) · a2q−j−1 · bj

where

α̃q (i, j) =

{
αq (i, j) if h ≤ q − i− 1

0 if h > q − i− 1

This is useful because, now, we can switch the summations order and bring all the
terms that do not depend on i upfront

sq (a, b) =

q−1∑
j=0

a2q−j−1 · bj ·

(
q−1∑
i=0

α̃q (i, j)

)
=

q−1∑
j=0

γq,j · a2q−j−1 · bj

where

γq,j =

q−1∑
i=0

α̃q (i, j) =

q−i−1∑
j=0

(
q − 1

i

)(
q − i− 1

j

)
(−1)q−i−j−1

((q − 1)!)2 (q + i)
.

Using the binomial definition and some straightforward computations, it is possible to
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Figure 7. Histogram of the order of the estimated system at different level of dimensional reduction on the

second benchmark model G2 (s). The true system G2 (s) has order 4, as indicated with the green vertical line.
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rewrite γq,j as

γq,j =
(−1)q+j−1

j! (q − 1)!
·
q−j−1∑
i=0

(−1)i

i! (q − i− j − 1)! (q + i)

Now, thanks to the fact

1∫
0

xq−1 · (−x)i dx = (−1)i ·

[
xq+i

q + i

]1

0

=
(−1)i

q + i

and defining

βq,j =
(−1)q+j−1

j! (q − 1)! (q − j − 1)!
.

we can note that

γq,j = βq,j ·
q−j−1∑
i=0

(
q − j − 1

i

) 1∫
0

xq−1 · (−x)i dx

= βq,j ·
1∫

0

xq−1
q−j−1∑
i=0

(
q − j − 1

i

)
(−x)i︸ ︷︷ ︸

(1−x)q−j−1

dx

= βq,j ·
1∫

0

xq−1 (1− x)q−j−1 dx

︸ ︷︷ ︸
B(q,q−j)

= βq,j ·B (q, q − j)

where B (a, b) is the Beta function (Olver, Lozier, Boisvert, & Clark, 2010). Recalling
that

B (q, q − j) =
(q − 1)! · (q − j − 1)!

(q + q − j − 1)!

It follows that

γq,j =
(−1)q+j−1

j!����(q − 1)!������
(q − j − 1)!

·�
���(q − 1)!������

(q − j − 1)!

(2q − j − 1)!
=

(−1)q+j−1

j! (2q − j − 1)!

Let us, now, shift focus on the case where a > b. In this case, we can employ the
fact that the kernel is a symmetric function to switch the two arguments and reusing
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the same rationale as in the other case. In particular, we have

sq (a, b) = sq (b, a) =

q−1∑
j=0

γq,j · b2q−j−1 · aj

Then,

sq (a, b) =

q−1∑
h=0

γq,h ·

{
a2q−h−1 · bh if a ≤ b
b2q−h−1 · ah if a > b

with

γq,h =
(−1)q+h−1

h! · (2q − h− 1)!

Concerning the second formula, from the definition of stable-spline, we have

kq (a, b) = λsq

(
e−βa, e−βb

)
Firstly, let us focus on the case where the first argument of the kernel is smaller

than the second one, i.e. a ≥ b. Here, using the results of Theorem 1 and by noting
that e−βa ≤ e−βb because β is strictly positive, we can write

kq (a, b) = λ ·
q−1∑
h=0

γq,h ·
(
e−βa

)2q−h−1
·
(
e−βb

)h
= λ ·

q−1∑
h=0

γq,h · e−β·[(2q−h−1)·a+h·b].

Analogously, in the case where a < b, we have

kq (a, b) = λ ·
q−1∑
h=0

γq,h ·
(
e−βb

)2q−h−1
·
(
e−βa

)h
= λ ·

q−1∑
h=0

γq,h · e−β·[(2q−h−1)·b+h·a]

therefore:

kq (a, b) = λ

q−1∑
h=0

γq,h

{
e−β·[(2q−h−1)a+hb] if a ≥ b
e−β·[(2q−h−1)b+ha] if a < b

�
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Proof of Proposition 2. The transfer function of an LTI system corresponds to the
Laplace transform of its impulse response. For this reason, we have

Ĝu (s) = L [ĝu] (s) =

∞∫
0

ĝu (t) e−st dt =

∞∫
0

(
n∑
i=1

ciĝ
u
i (t)

)
e−st dt

=

n∑
i=1

ci

∞∫
0

ĝui (t) e−st dt =

n∑
i=1

ciĜ
u
i (s) ,

where the term Ĝui (s) = L [ĝui ] (s) reads as

Ĝui (s) =

∞∫
0

ĝui (t) e−st dt =

∞∫
0

 ∞∫
0

u (ti − ξ) k (t, ξ) dξ

 e−st dt
=

∞∫
0

u (ti − ξ)

 ∞∫
0

k (t, ξ) e−st dt

 dξ =

∞∫
0

u (ti − ξ)K (s; ξ) dξ.

To further simplify this expression, recall that the integral can be limited to ti − d,
obtaining

Ĝui (s) =

ti−d∫
0

u (ti − ξ)K (s; ξ) dξ.

At last, with the change of variable x = ti − ξ, we obtain

Ĝui (s) =

ti∫
d

u (x)K (s; ti − x) dx.

�

Proof of Proposition 3. Let us start by analyzing the term

Kq (s;x) =

∞∫
0

kq (x, t) e−st dt,

where the kernel is a stable-spline of order q. It is useful to note that the parameter
x ∈ R is always greater than 0 because in (19) this argument is always positive, thanks
to the assumption that ti > d.

It is convenient to divide this integral in two parts:

Kq (s;x) =

x∫
0

kq (x, t) e−st dt+

∞∫
x

kq (x, t) e−st dt.
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Firstly, let us focus on the first integral:

x∫
0

kq (x, t) e−st dt =

x∫
0

λ

q−1∑
h=0

γq,he
−β[(2q−h−1)x+ht]e−st dt

= λ

q−1∑
h=0

γq,he
−β(2q−h−1)x

x∫
0

e−(s+βh)t dt

= λ

q−1∑
h=0

γq,h
e−β(2q−h−1)x

s+ βh

(
1− e−(s+βh)x

)

= λ

q−1∑
h=0

γq,h

(
e−β(2q−h−1)x

s+ βh
−
e−(s+β(2q−1))x

s+ βh

)
.

Analogously, the second integral can be simplified as

∞∫
x

kq (x, t) e−st dt =

∞∫
x

λ

q−1∑
h=0

γq,he
−β[(2q−h−1)t+hx]e−st dt

= λ

q−1∑
h=0

γq,he
−βhx

∞∫
x

e−(s+β(2q−h−1))t dt

= λ

q−1∑
h=0

γq,h
e−(s+β(2q−h−1))x

s+ β (2q − h− 1)
.

Thus, Kq (s;x) can be reformulated as

Kq (s;x) = λ

q−1∑
h=0

γq,h
e−β(2q−h−1)x

s+ βh
+ λ

q−1∑
h=0

γq,h

[
e−(s+β(2q−1))x

s+ β (2q − h− 1)
−
e−(s+β(2q−1))x

s+ βh

]
.

This can be further simplified by noting that

q−1∑
h=0

γq,h

(
1

s+ β (2q − h− 1)
−

1

s+ βh

)
=

(−1)q β2q−1∏2q−1
i=0 (s+ βi)

,

obtaining

Kq (s;x) = λ

q−1∑
h=0

γq,h
e−β(2q−h−1)x

s+ βh
+ λe−(s+β(2q−1))x (−1)q β2q−1∏2q−1

i=0 (βi+ s)
.
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Now, it is possible to plug Kq (s;x) in (19) to obtain Ĝui for the stable-spline kernel.

Gui (s) =

ti∫
d

u (τ)K (s; ti − τ) dτ

= λ

q−1∑
h=0

γq,h

s+ βh

ti∫
d

u (τ) e−β(2q−h−1)(ti−τ) dτ

︸ ︷︷ ︸
Bui (β(2q−h−1))

+

+ λ
(−1)q β2q−1∏2q−1
i=0 (βi+ s)

ti∫
d

u (τ) e−(s+β(2q−1))(ti−τ) dτ

︸ ︷︷ ︸
Bui (s+β(2q−1))

= λ

q−1∑
h=0

γq,h

s+ βh
Bu
i (β (2q − h− 1)) + λ

(−1)q β2q−1∏2q−1
i=0 (βi+ s)

Bu
i (s+ β (2q − 1)) .

Where

Bu
i (x) =

ti∫
d

u (τ) e−x(ti−τ) dτ (A1)

with a change of variable, we can note that

Bu
i (x) = −

d∫
ti−d

u (ti − ξ) e−xξ dξ =

ti−d∫
0

u (ti − ξ) e−xξ dξ (A2)

since u (t) = 0, ∀t ≤ d, we can extend the integral upper bound to infinity.

Bu
i (x) =

∞∫
0

u (ti − ξ) e−xξ dξ = L [ui] (x) = Aui (x) (A3)
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Lastly, the identified transfer function using the stable-spline kernel is then

Ĝu (s) =

n∑
i=1

ciĜ
u
i (s)

= λ

q−1∑
h=0

γq,h

s+ βh

n∑
i=1

ciA
u
i (β (2q − h− 1))︸ ︷︷ ︸

Quq,h(s)

+

+ λ
(−1)q β2q−1∏2q−1
i=0 (s+ βi)

n∑
i=1

ciA
u
i (s+ β (2q − 1))︸ ︷︷ ︸

Hu
q (s)

= λ

[
q−1∑
h=0

Quq,h (s) +Hu
q (s)

]
.

�

Proof of Theorem 1. Since the transfer function Ĝu is defined as the sum of q + 1
transfer functions, we need to show that all these addends are asymptotically stable.
First, let us consider the q − 1 addends of the type

Quq,h (s) = λ ·
γq,h

s+ βh
·

(
n∑
i=1

ciA
u
i (β (2q − h− 1))

)
,

with h > 0. All these rational functions have only one real pole in −βh and it is strictly
less than zero because h > 0 and β > 0. Therefore, these first q − 1 transfer functions
are asymptotically stable. The remainder of Ĝu is

R (s) = λQuq,0 (s) + λHu
q (s)

=
λ

s
· γq,0

n∑
i=1

ciA
u
i (β (2q − 1)) +

λ

s
·

(−1)q β2q−1∏2q−1
i=1 (βi+ s)

n∑
i=1

ciA
u
i (s+ β (2q − 1)) .

The poles of the transfer function R (s) are

{0,−β,−2β, . . . ,− (2q − 1)β} ∪

(
n⋃
i=1

Pi

)
,

where Pi are the poles, whose real part is strictly negative (for the hypothesis of the
Theorem), of the transfer function Aui (s+ β (2q − 1)). Therefore, the only non-strictly
negative pole is the one in 0 because β > 0. However, there is also a zero in the origin.

To see this, consider the transfer function R̃ (s) such that R (s) =
λ

s
· R̃ (s). Then, the

transfer function R (s) has a zero in the origin if and only if R (0) = 0. This can be
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verified with some mathematical steps

R̃ (0) = γq,0

n∑
i=1

ciA
u
i (β (2q − 1)) +

(−1)q β2q−1∏2q−1
i=1 βi

n∑
i=1

ciA
u
i (β (2q − 1))

=

(
(−1)q−1

(2q − 1)!
+

(−1)q���
β2q−1

�
��

β2q−1 (2q − 1)!

)
n∑
i=1

ciA
u
i (β (2q − 1))

=
(−1)q−1 + (−1)q

(2q − 1)!

n∑
i=1

ciA
u
i (β (2q − 1)) .

Since (−1)q−1 and (−1)q have opposite signs for every value of q, we have

R̃ (0) =
0

(2q − 1)!

n∑
i=1

ciA
u
i (β (2q − 1)) = 0

therefore R (s) has a zero in the origin that cancels out the pole in 0. Therefore, the

identified system Ĝu is asymptotically stable.
�
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