Hydroxyapatite is one of the materials of choice for tissue engineering bone scaffolds manufacturing. Vat photopolymerization (VPP) is a promising Additive Manufacturing (AM) technology capable of producing scaffolds with high resolution micro-architecture and complex shapes. However, mechanical reliability of ceramic scaffolds can be achieved if a high fidelity printing process is obtained and if knowledge of the intrinsic mechanical properties of the constituent material is available. As the hydroxyapatite (HAP) obtained from VPP is subjected to a sintering process, the mechanical properties of the material should be assessed with specific reference to the process parameters (e.g. sintering temperature) and to the specific characteristic size of the microscopic features in the scaffolds. In order to tackle this challenge the HAP solid matrix of the scaffold was mimicked in the form of miniaturized samples suitable for ad hoc mechanical characterization, which is an unprecedented approach. To this purpose small scale HAP samples, having a simple geometry and size similar to that of the scaffolds, were produced through VPP. The samples were subjected to geometric characterization and to mechanical laboratory tests. Confocal laser scanning and Computed micro-Tomography (micro-CT) were used for geometric characterization; while, micro-bending and nanoindentation were used for mechanical testing. Micro-CT analyses have shown a highly dense material with negligible intrinsic micro-porosity. The imaging process allowed quantifying the variation of geometry with respect to the nominal size showing high accuracy of the printing process and identifying printing defects on one specific sample type, depending on the printing direction. The mechanical tests have shown that the VPP produces HAP with an elastic modulus as high as approximately 100GPa and flexural strength of approximately 100MPa. The results of this study have shown that vat photopolymerization is a promising technology capable of producing high quality HAP with reliable geometric fidelity. © 2023 Elsevier Ltd

Mechanical characterization of miniaturized 3D-printed hydroxyapatite parts obtained through vat photopolymerization: an experimental study

L. D'Andrea;D. Gastaldi;P. Vena
2023-01-01

Abstract

Hydroxyapatite is one of the materials of choice for tissue engineering bone scaffolds manufacturing. Vat photopolymerization (VPP) is a promising Additive Manufacturing (AM) technology capable of producing scaffolds with high resolution micro-architecture and complex shapes. However, mechanical reliability of ceramic scaffolds can be achieved if a high fidelity printing process is obtained and if knowledge of the intrinsic mechanical properties of the constituent material is available. As the hydroxyapatite (HAP) obtained from VPP is subjected to a sintering process, the mechanical properties of the material should be assessed with specific reference to the process parameters (e.g. sintering temperature) and to the specific characteristic size of the microscopic features in the scaffolds. In order to tackle this challenge the HAP solid matrix of the scaffold was mimicked in the form of miniaturized samples suitable for ad hoc mechanical characterization, which is an unprecedented approach. To this purpose small scale HAP samples, having a simple geometry and size similar to that of the scaffolds, were produced through VPP. The samples were subjected to geometric characterization and to mechanical laboratory tests. Confocal laser scanning and Computed micro-Tomography (micro-CT) were used for geometric characterization; while, micro-bending and nanoindentation were used for mechanical testing. Micro-CT analyses have shown a highly dense material with negligible intrinsic micro-porosity. The imaging process allowed quantifying the variation of geometry with respect to the nominal size showing high accuracy of the printing process and identifying printing defects on one specific sample type, depending on the printing direction. The mechanical tests have shown that the VPP produces HAP with an elastic modulus as high as approximately 100GPa and flexural strength of approximately 100MPa. The results of this study have shown that vat photopolymerization is a promising technology capable of producing high quality HAP with reliable geometric fidelity. © 2023 Elsevier Ltd
2023
3D printing
Bending tests
Bone
Computerized tomography
Geometry
Photopolymerization
Printing presses
Scaffolds (biology)
Sintering, Computed micro-tomography
Geometric characterization
Mechanical
Mechanical characterizations
Micro-bending
Micro-bending test
Micro-tomography
Photo polymerization
Printing process
Vat photopolymerization, Hydroxyapatite
Computed micro-Tomography
Hydroxyapatite
Micro-bending tests
Stereolithography
Vat photopolymerization
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1751616123001133-main.pdf

Accesso riservato

: Publisher’s version
Dimensione 3.05 MB
Formato Adobe PDF
3.05 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1234948
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 2
social impact