Bionanocomposites are an emerging class of material. They are designed and developed to achieve advanced structural and functional properties, by using biobased polymers. Among the bio-polymers, focus is on chitosan (CS), poly (N-acetyl-D-glucosamine), a copolymer of [1,4]-linked 2-acetamido-2-deoxy-D-glucopyranose and 2-amino-2-deoxy-D-glucopyranose. Research is steadily increasing on bionanocomposites with graphene and graphene related materials. It is here presented a research on bionanocomposites based on CS and graphene layers (G). Particular focus of the research was on the integration of the graphene layers in the nanocomposite. Materials were prepared based on the supramolecular interaction between CS and G. The core of the research was then on the edge functionalization of the layers. OH groups were added through the cycloaddition reaction with a biosourced pyrrole compound, serinol pyrrole (SP), carried out with the help of either thermal or mechanical energy, with an atom efficiency up to 96% and a very low E Factor. The preparation of CS/G adducts was very simple, even by using only mortar and pestle. OH groups were also added to the G edges by performing the reaction of G with KOH. The Reimer-Tiemann reaction on the G-OH adduct led to the introduction of aldehydic groups, which promote the crosslinking of CS. The CS/G adducts were characterized by means of wide angle X-ray diffraction, scanning and transmission electron microscopy, Fourier transform infrared, X-ray photoelectron and Raman spectroscopies. Thermal stability of the composites was studied by thermogravimetric analysis. Carbon papers and aerogels were prepared, studying the flexibility and the stability in various solvents in a wide pH range.
Bionanocomposites based on chitosan and few layers graphene. The effect of tailor-made functionalization
Maurizio Galimberti;V. Barbera;S. Guerra;G. Prioglio;F. Margani;E. Testa;M. Zambito Marsala
2021-01-01
Abstract
Bionanocomposites are an emerging class of material. They are designed and developed to achieve advanced structural and functional properties, by using biobased polymers. Among the bio-polymers, focus is on chitosan (CS), poly (N-acetyl-D-glucosamine), a copolymer of [1,4]-linked 2-acetamido-2-deoxy-D-glucopyranose and 2-amino-2-deoxy-D-glucopyranose. Research is steadily increasing on bionanocomposites with graphene and graphene related materials. It is here presented a research on bionanocomposites based on CS and graphene layers (G). Particular focus of the research was on the integration of the graphene layers in the nanocomposite. Materials were prepared based on the supramolecular interaction between CS and G. The core of the research was then on the edge functionalization of the layers. OH groups were added through the cycloaddition reaction with a biosourced pyrrole compound, serinol pyrrole (SP), carried out with the help of either thermal or mechanical energy, with an atom efficiency up to 96% and a very low E Factor. The preparation of CS/G adducts was very simple, even by using only mortar and pestle. OH groups were also added to the G edges by performing the reaction of G with KOH. The Reimer-Tiemann reaction on the G-OH adduct led to the introduction of aldehydic groups, which promote the crosslinking of CS. The CS/G adducts were characterized by means of wide angle X-ray diffraction, scanning and transmission electron microscopy, Fourier transform infrared, X-ray photoelectron and Raman spectroscopies. Thermal stability of the composites was studied by thermogravimetric analysis. Carbon papers and aerogels were prepared, studying the flexibility and the stability in various solvents in a wide pH range.File | Dimensione | Formato | |
---|---|---|---|
M. Galimberti et al - Bionanocomposites based on chitosan - Finale.pdf
accesso aperto
Descrizione: Comunicazione orale
:
Altro materiale allegato
Dimensione
4.2 MB
Formato
Adobe PDF
|
4.2 MB | Adobe PDF | Visualizza/Apri |
khk scientifc_program.pdf
accesso aperto
Descrizione: Programma
:
Altro materiale allegato
Dimensione
610.8 kB
Formato
Adobe PDF
|
610.8 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.