The El Nino Southern Oscillation (ENSO) dominates the conversation about predictability of climate extremes and early warning and preparedness for floods and droughts, but in Africa other modes of climate variability are also known to influence rainfall anomalies. In this study, we compare the role of ENSO in driving flood hazard over sub-Saharan Africa with modes of climate variability in the Indian and Atlantic Oceans. This is achieved by applying flood frequency approaches to a hydrological reanalysis dataset and streamflow observations for different phases of the ENSO, Indian Ocean Dipole and Tropical South Atlantic climate modes.Our results highlight that Indian and Atlantic Ocean modes of climate variability are equally as important as ENSO for driving changes in the frequency of impactful floods across Africa. We propose that in many parts of Africa a larger consideration of these unsung climate modes could provide improved seasonal predictions of associated flood hazard and better inform adaptation to the changing climate.

Beyond El Niño: Unsung climate modes drive African floods

Andrea Ficchi';
2021-01-01

Abstract

The El Nino Southern Oscillation (ENSO) dominates the conversation about predictability of climate extremes and early warning and preparedness for floods and droughts, but in Africa other modes of climate variability are also known to influence rainfall anomalies. In this study, we compare the role of ENSO in driving flood hazard over sub-Saharan Africa with modes of climate variability in the Indian and Atlantic Oceans. This is achieved by applying flood frequency approaches to a hydrological reanalysis dataset and streamflow observations for different phases of the ENSO, Indian Ocean Dipole and Tropical South Atlantic climate modes.Our results highlight that Indian and Atlantic Ocean modes of climate variability are equally as important as ENSO for driving changes in the frequency of impactful floods across Africa. We propose that in many parts of Africa a larger consideration of these unsung climate modes could provide improved seasonal predictions of associated flood hazard and better inform adaptation to the changing climate.
2021
Climate variability
Flood frequency analysis
Teleconnections
El Nino-Southern Oscillation
Indian Ocean Dipole
Tropical South Atlantic
File in questo prodotto:
File Dimensione Formato  
11311-1233041_Ficchì.pdf

accesso aperto

: Publisher’s version
Dimensione 4.47 MB
Formato Adobe PDF
4.47 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1233041
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 8
social impact