Tropical cyclone genesis indices are valuable tools for studying the relationship between large-scale environmental fields and the genesis of tropical cyclones, supporting the identification of future trends of cyclone genesis. However, their formulation is generally derived from simple statistical models (e.g., multiple linear regression) and are not optimised globally. In this paper, we present a simple framework for optimising genesis indexes given a user-specified trade-off between two performance metrics, which measure how well an index captures the spatial and interannual variability of tropical cyclone genesis. We apply the proposed framework to the popular Emanuel and Nolan Genesis Potential Index, yielding new, optimised formulas that correspond to different trade-offs between spatial and interannual variability. Result show that our refined indexes can improve the performance of the Emanuel and Nolan index up to 8% for spatial variability and 16%-22% for interannual variability; this improvement was found to be statistically significant (p < 0.01). Lastly, by analysing the formulas found, we give some insights into the role of the different inputs of the index in maximising one metric or the other.

Optimisation-based refinement of genesis indices for tropical cyclones

Ascenso G.;Scoccimarro E.;Castelletti A.
2023-01-01

Abstract

Tropical cyclone genesis indices are valuable tools for studying the relationship between large-scale environmental fields and the genesis of tropical cyclones, supporting the identification of future trends of cyclone genesis. However, their formulation is generally derived from simple statistical models (e.g., multiple linear regression) and are not optimised globally. In this paper, we present a simple framework for optimising genesis indexes given a user-specified trade-off between two performance metrics, which measure how well an index captures the spatial and interannual variability of tropical cyclone genesis. We apply the proposed framework to the popular Emanuel and Nolan Genesis Potential Index, yielding new, optimised formulas that correspond to different trade-offs between spatial and interannual variability. Result show that our refined indexes can improve the performance of the Emanuel and Nolan index up to 8% for spatial variability and 16%-22% for interannual variability; this improvement was found to be statistically significant (p < 0.01). Lastly, by analysing the formulas found, we give some insights into the role of the different inputs of the index in maximising one metric or the other.
2023
tropical cyclones
genesis potential index
genetic algorithms
ENGPI
NSGA-II
File in questo prodotto:
File Dimensione Formato  
Ascenso_2023_Environ._Res._Commun._5_021001.pdf

accesso aperto

: Publisher’s version
Dimensione 1.89 MB
Formato Adobe PDF
1.89 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1233030
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact