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Abstract
Tropical cyclone genesis indices are valuable tools for studying the relationship between large-scale
environmental fields and the genesis of tropical cyclones, supporting the identification of future trends
of cyclone genesis. However, their formulation is generally derived from simple statisticalmodels
(e.g.,multiple linear regression) and are not optimised globally. In this paper, we present a simple
framework for optimising genesis indexes given a user-specified trade-off between twoperformance
metrics, whichmeasure howwell an index captures the spatial and interannual variability of tropical
cyclone genesis.We apply the proposed framework to the popular Emanuel andNolanGenesis
Potential Index, yielding new, optimised formulas that correspond to different trade-offs between
spatial and interannual variability. Result show that our refined indexes can improve the performance
of the Emanuel andNolan index up to 8% for spatial variability and 16%–22% for interannual
variability; this improvement was found to be statistically significant (p< 0.01). Lastly, by analysing
the formulas found, we give some insights into the role of the different inputs of the index in
maximising onemetric or the other.

1. Introduction

Tropical cyclones (TCs) are among the deadliest and costliest natural disasters [1]. Over the last decades, the
accuracy of short-term forecasts of TC genesis has increased substantially [2]. Yet, predicting global TC activity
on longer time scales, from seasonal tomulti-decadal, remains challenging [3]. This is due to the lack of a
complete understanding of the processes behind the genesis of tropical cyclones [4]. In this context, empirical
methods exploring the relationship between tropical cyclones and the large-scale environment are a suitable
alternative [5] to developingmodels for short- and long-termTC forecasting and tracking and understanding
how climate changewill affect TC frequency and intensity globally and locally.

Two approaches exist for studying the TC-climate relationship. Thefirst involves the use of general
circulationmodels (GCMs) [6–9]. Once regarded as unable to simulate TC-like vortices accurately [10], such
models have been improved considerably over the years thanks to increasing computational power. They are
now robust enough that realistic TCs can be found in their simulations [11–14]. Nevertheless, they are either
computationally expensive to run [15] or have relatively low spatial and temporal resolution [13]. Therefore,
obtaining robust predictions of future TC activity fromGCMs is still challenging [16]. However, to overcome
the low resolution of suchmodels, downscaling strategies can be appliedwhich have been shown to be useful
tools for studying climate projections of TC genesis [17, 18]. Themost confidentGCMprojections [19] estimate
that a 2 °C increase in global temperatures will lead to higher TC inundation levels [20], due to a combination of
sea level rise, projected slower TC translation speed [21, 22] and higher TCprecipitation rates [23–25].
Furthermore, whereas the frequency of TCs is projected to decrease (though this estimate is less confident than
the ones above [20]), their average (and highest) intensity is projected to increase, and, as intensity is often linked
with damage, so is their cost [11, 26].
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Alternatively, the connection between environmental drivers andTCG can be empiricallymodelled [10, 16].
Typically, this connection takes the formof indices (namelyGenesis Indices (GIs)) that combine a set of large-
scale dynamic and thermodynamic atmospheric and oceanic predictors into a single variable. Themagnitude of
the index indicates how favourable environmental conditions are to the formation of cyclones. Under the
assumption that the input variables can be skilfully predicted, it is possible to estimate how cyclone generation
frequency and distributionwill change under future climate conditions or predict if an upcoming hurricane
season is likely to be particularly severe. UsingGIs has some key advantages over relying onGCM-
generated TCs:

(i) Indexes are easy to compute—they typically consist of the product of the predictors scaled by empirically
derived exponents and coefficients [27].

(ii)They can be applied to data at different temporal and spatial resolutions, from regional to global scale. They
can even be applied to data produced by differentmodels.

(iii)
Currently, climatemodels aremore skilful at simulating large-scale environmental variables thanTC-like
vortices,meaning the performance ofGIs is hinderedmainly by the chosen predictors and theway they are
combined together.

GIs have been applied in a variety of studies, such as linking changes in TC activity to patterns of climate
variability such as theMadden-JulianOscillation [28] and the ElNiño/SouthernOscillation [27, 29], or
assessing the role of specific large-scale fields in TCG [5]. Yet, GIs suffer from some limitations. Although they
are generally robust at replicating TCG’s spatial distribution and seasonal cycle [16, 30, 31], they struggle to
capture its interannual variability. Yu et al [16] reported a correlation coefficient of -0.04 between a particular GI
and historical data for the interannual variability of TCGover thewesternNorth Pacific. Refined index versions
involving different combinations of variables have been shown to improve this specific aspect [32]. However, the
optimality of the chosen parameterisation and its effect on the index skill have not yet been explored.
Furthermore,most of the commonly usedGIs cannot explain the decreasing trend of TCs occurrence detected
in climate projections [33]. Finally, thoughGIs work fairly well on different reanalysis datasets [34], they are
typicallyfitted to a specific dataset with a given bias and spatio-temporal resolution and are not universally
optimised [27]. Consequently, GIs need to be scaled by a factorwhen applied to datasets other than the one they
were originally fit,making it cumbersome to compare the performance of different GIs or their performance
across different datasets [30].

In this paper, we introduce an optimisation-based framework to refineGIs for threemain purposes:

(i) To improve the performance ofGIs byfinding the globally optimumcombination of the chosen predictors.

(ii)To provide a systematic assessment of the sensitivity of the index performance in reproducing a set of
statistical properties of the observed TCs (e.g. spatial pattern and interannual variability) on the numerical
coefficients used toweight the large-scale variables in the index.

(iii)
To offer several versions of the optimisedGI, each corresponding to a different trade-off (selected by the user)
between two performancemetrics.

The rest of the paperwill describe how the proposed framework is structured and present different
optimised versions of the Emanuel andNolanGenesis Potential Index [35], widely regarded as one of the best
GIs available [30].

2.Datasets andmethodologies

2.1. The ENGPI
The Emanuel andNolanGenesis Potential Index (hereafter ENGPI) is a refinement ofGray’s seasonal genesis
parameter parameter [36], the first GI ever developed.We chose it because it is arguably themost studiedGI in
the literature [5, 15, 31, 37, 38, 10, 27, 28, 30, 16, 32]. Yet, the same framework described here can be applied to
any otherGIwithminimal changes.
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The ENGPI’s formula is:

h= + -
-ENGPI V

RH MPI
1 0.1

50 70
10 1shear,850 200

2 700
3 3

5
850

3 2⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ∣ ∣ ( )

whereVshear,850−200 is themagnitude of the vertical wind shear between 850 and 200 hPa (inms−1);RH700 is the
relative humidity at 700 hPa (in%); η850 is the absolute vorticity at 850 hPa (in s

−1); andMPI is theMaximum
Potential Intensity (inms−1), which is the theoreticalmaximum intensity a TC is expected to reach.MPIwas
originally formulated by Emanuel [39] and latermodified by Bister and Emanuel [40], taking the formof the
following equation:
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whereCK andCD are the surface enthalpy andmomentum exchange coefficients;Ts is the sea surface
temperature (inK );To is the outflow temperature (inK ); and *ho and h* are the saturationmoist static energies
of the sea surface and of the free atmosphere, respectively. TheMPIwas arguably themost crucial addition in the
ENGI formula compared toGray’s index, which instead uses the near-surface ocean thermal energy (integrated
over waters with temperature above 26.5°C) and the vertical gradient of the equivalent potential temperature
between the surface and 500 hPa.

2.2.Datasets
Weused the best-track data from the International Best trackArchive for Climate Stewardship (IBTrACS)
project (version v04r00, downloaded from:https://www.ncdc.noaa.gov/ibtracs/; [41]), at a temporal
resolution of 3h, between 1980 and 2020 as a source for observed TCG. IBTrACS is a curated collection of TC
data compiled bymultiple international organisations. In this study, we defineTCG as thefirst time step in
IBTrACSwhen a TC reached an intensity (in terms ofmaximum sustainedwind speed) of 35 kt.We excluded all
the events classified in IBTrACS as either spurious or extra-tropical [42] and counted all remaining TCG events
over a global 2.5°× 2.5° latitude/longitude grid.

We took the inputs to the ENGPI from two reanalysis datasets: ECMWF’s ERA5 dataset (https://cds.
climate.copernicus.eu/#!/search?text=ERA5&type=dataset; [43]) andNASA’sMERRA2dataset (https://
disc.gsfc.nasa.gov/datasets?project=MERRA-2; [44]). Prior to their download, we interpolated both datasets to
a 2.5°× 2.5° latitude/longitude grid over the 1980–2020 period, with amonthly temporal resolution.

2.3.Optimisation framework
Tofind optimal configurations of the ENGPI, we used theNSGA-IImulti-objective genetic algorithm [45].
Genetic algorithms have properties thatmake them especially suitable for this task:

• They efficiently explore an arbitrarily large space of solutions.

• Unlike gradient-based optimisation algorithms, they do not require derivatives to be computed and therefore
can be applied to awider range of functions.

• They support the definition ofmultiple optimisation objectives and they output aPareto front of solutions,
i.e., they generate a set of solutions that represent a spectrumof optimal trade-offs betweenmaximizing one
objective or the other(s).

• They are robust against localminima andmaxima [46].

We chose theNSGA-II genetic algorithmbecause it is one of themost well known and studiedmulti-
objective genetic algorithms and it has been found to performwell on a variety of tasks. Furthermore, it has been
shown to outperformother genetic algorithms, particularly when few objectives are used [47–49]. An in-depth
description ofNSGA-II is beyond the scope of this paper2, but a simple, high-level overview of how it works is
given in figure 1. In brief, given a series of parameters to optimise, the algorithm generates an initial set
(population) of random candidates, then selects the ones that performbest according to some specified objective
function(s), andfinally introduces randomness in the selected solutions by randomlymixing them together
(crossover) andmutating some of their parameters; a new population is then created (retaining the offspring of
the previous generation and the best-performing (elite) individuals of all previous generations), and the process
continues until either a set number of generations has been created or the objectives have reached a desired value.

In our proposed framework, theNSGA-II algorithm searches the space of the parameters in the ENGPI
formula and optimises them so that the resulting ENGPImaximises two objective functions:

2
Readers interested in the details of its implementation should refer to its original paper: [45]
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• spatial correlation, defined as the cell-by-cell correlation between the ENGPI and the observed TCGdata from
IBTrACS (averaged over the entire period) (e.g.,figure 2).

• temporal correlation, defined as the correlation between the curves of yearly TCGof the ENGPI and the
observed TCGdata (e.g.figure 4).

Figure 1.High-level flowchart of how genetic algorithmswork.

Figure 2. Spatial distributions of TCG as observed in IBTrACS (panel A) and in the original ENGPI, calculated using data fromERA5
(panel B) andMERRA2 (panel C). Allmaps are averaged over the entire time period. Spatial correlation is computed from thesemaps
by taking the average cell-by-cell correlation between twomaps. The unit ofmeasure is the number of TCs per year.
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We ranNSGA II for 10,000 iterations searching the exponent’s space in the range of [-3, 3] and coefficient’s
in the range of [0.01, 100]; we chose the extremes of the ranges so that the search spacewould be as large as
possible while preventing the computed indices from incurring into numerical over/underflow (i.e. due to too
large/small exponents). The algorithmwas also allowed to choose at which pressure level to select each variable.
The pressure levels fromwhichwe allowed the algorithm to choose were 1000, 850, 700, 600, 500, 250, 200, 100,
50, 10, and 1 hPa; we selected these levels to give the algorithm the largest possible search spacewhile avoiding
taking all pressure levels present in ERA5 andMERRA2, due to computational constraints. Furthermore,
following the improvement over the ENGPI proposed byWang andMurakami [32], we added an additional
parameter (a power of the exponential function) to the ENGPI formula, transforming it into:

h= + -
-ENGPI V

RH MPI
e1 0.1
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10 3shear
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,850 200

2 700
3 3
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3 2⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ∣ ∣ ( )

where x, the exponent of the exponential, is optimised alongwith all other exponents and coefficients. The
purpose of this parameter ismerely to scale the ENGPI and should not impact the index’s physical properties.

We re-evaluated the optimal solutions on both datasets using threemetrics: spatial correlation, temporal
correlation, and seasonal correlation, defined as the correlation between the curves ofmonthly total TCG in
ENGPI and IBTrACS (e.g., figure 3). Here, two of the objectives correspond to two of themetrics, but this is not
necessarily always the case, as the optimisation and evaluation phases are disentangled.

Following Emanuel andNolan [35]we use the seasonal correlation as an evaluationmetric and therefore it
was included here for comparison.

3. Results and discussion

3.1. Baseline
The evaluationmetrics reported in table 1 constitute the baseline against which to compare the solutions found
by the optimisation algorithm. The plots fromwhich the correlations in table 1were calculated are shown in
figures 2, 3, and 4 for spatial, seasonal, and temporal correlation, respectively. As perMenkes et al [30], the values
shown infigure 1 are scaled by a factor that brings the total average yearly number of TCs to equal that of data
from IBTrACS.

As previously reported, these results shown how the original ENGPI captures well the spatial and seasonal
distribution of TCG (and it does so equally well across different datasets), but fails to capture the interannual
variability of TCG.

3.2.Optimised solutions
The optimisation runs for the ERA5 andMERRA2 datasets generated twoPareto fronts (figures 5 and 6,
respectively). To illustrate the differences between the solutions found, we sampled three solutions from each
front (see table 2 andfigures 5 and 6): one for either extreme of the front, and a balanced trade-off between
spatial and temporal correlation.

Let usfirst consider solutions (b) and (e), which are arguably themost well-balanced solutions found for
ERA5 andMERRA2, respectively. For the dataset onwhich theywere optimised, both solutions performed
better than the baseline by about 8% for spatial correlation and 16%–22% for temporal correlation. The
statistical significance (p< 0.01) of these results was confirmed using aMonte Carlo approach: 50,000 versions
of the ENGPIwere createdwith random exponents, and their performance (in terms of spatial and temporal
correlation)was tested against the baseline ENGPI, creating a statistical distribution of the improvement of the
randomised indices over the baseline ENGPI; Solutions (b) and (e)were found to bewithin the 99th percentile of
this distribution. By comparing these solutions with neighbouring ones in the Pareto front, we found that the
main similarity between themwas that they all selected absolute vorticity at 600 hPa instead of at 850 hPa.
Althoughmost numericalmodels use vorticity at 850 hPa, some evidence of the physical importance of vorticity
at 600 hPa exists. Specifically,Wang [50] andMurthy et al [51] show that in the vertical structure of TCs the peak
of vorticity occurs at 600 hPa, not at 850 hPa. Therefore, the algorithm chooses to take vorticity at the height at
which themaximumoccurs as away to assignmore importance to this variable.

As for the temporal correlation improvements, in themajority of solutions found they are relatedmostly to
lowered exponents for the thermodynamic variables (relative humidity andMPI). Indeed, by inspecting
solutions (a) and (d), which are the oneswith the highest temporal correlation for ERA5 andMERRA2,
respectively, it appears that the algorithm is trying to remove these two variables from the equation by setting
very low exponents for them and even taking relative humidity at 1 hPa. As at such a height, we expect there not
to be any relative humidity, this indicates that, once the exponents are set to low enough values, this variable has
little to no influence on the performance of the equation. This finding is in agreementwith thework byWang

5
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andMurakami [32], who use an input variable selection algorithm tofind the best variables to construct a novel
GI and found that no thermodynamic variables were selected. Furthermore, as indicated by Sharmila andWalsh.
[52], relative humidity andMPI are not relevant predictors of the annual TCGvariability in thewestern and
eastern Pacific oceans. As these two basins containmore than 50%of all TCG events, it is plausible that a globally
optimised indexwould attempt to ignore those two thermodynamic variables, as, on average, they help little to
improve the temporal correlation as calculated here.

However, caution should be employedwhen interpreting solutions from either extreme of the Pareto fronts,
as one objectivemay have beenmaximised at the expense of the physicalmeaning of the other. Indeed, the
spatial distributionmaps for solution (a) are considerably less realistic than the baseline (see figure 7), with a
non-trivial likelihood of TCGbeing detected as far south as 40°S and as far north as in theMediterranean Sea.

Figure 3.Month-by-month number of total TCG events in the time period, as counted in IBTrACS and in the original ENGPI, using
data fromERA5 (panel A) andMERRA2 (panel B). The plots show separate curves for theNorthernHemisphere (NH) and for the
SoutherHemisphere (SH). Seasonal correlation is computed from these curves by summing the values for the twohemispheres and
then computing the correlation between the ENGPI and IBTrACS curves.

Table 1.Performance of the original ENGPI.

Evaluationmetric ERA5 MERRA2

Rspatial 0.616 0.635

Rseasonal 0.967 0.977

Rtemporal 0.269 0.170
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This indicates that the solutions at the tails of the Pareto frontsmay have achieved high values in one objective
function just by virtue of chance, but do not represent a physically realisticmodel of TCG. Furthermore, even
though the temporal correlation in solution (a) ismore than twice as higher than in the baseline, it still does not
capture the true interannual variability of TCG (figure 8), potentially because the variables that truly explain the
interannual variability of TCG are not present in the ENGPI. Furthermore, onewould expect that a formulation
of the ENGPI that captured the true underlyingmechanisms of TCGwould not need to optimise one objective
at the expense of the other. Therefore, it is possible that the solutions in themiddle of the Pareto front, where
both objectives are optimised simultaneously, are closer to the true physicalmodel of TCG.

Another observationwe derive from table 2 is that solutions found by optimising on one dataset are almost
equivalently validwhen evaluated on the other. For example, figures 9 and 10 showhow the spatial distribution
maps and interannual variability curves of solution (b) (optimised on ERA5) are similar when evaluated on
ERA5 andMERRA2. Also, themain difference between solutions found in the two datasets seems to be that
solutions inMERRA2 tend to select variables at higher altitudes than solutions in ERA5. Two striking similarities
are that exponents for vertical wind shear are almost always selected to be in the range [−3,−2.4], and those for
absolute vorticity in the vicinity of 2.

Finally, especially in the neighbourhood of solutions (b) and (e), there existmany formulations of the ENGPI
that lead to almost equivalent performance (figures 5 and 6). The fact that no single solution sticks out as the
clear global optimum for both objective functions indicates that the formulamay be over-parameterised.
Therefore, itmay be beneficial to extend the proposed framework toGIs composed of different input variables

Figure 4.Year-by-year number of yearly TCG events in the time period, as counted in IBTrACS and in the original ENGPI, using data
fromERA5 (panel A) andMERRA2 (panel B). Temporal correlation is calculated by taking the correlation between two curves in the
same plot.
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from the one in the ENGPI, potentially even letting an input variable selection algorithm choosewhich variables
to include.

4. Conclusions

In this paper, we presented a framework to optimise the parameters of tropical cyclone genesis indices with
respect to different evaluationmetrics. Rather than resulting in a single expression of the index, which is
arbitrarily selected according to a chosen evaluationmetric andwhose optimisation is sensitive to the training
data, this framework provides as an output a family of equally optimal solutions, together with an assessment of
the skill of each of the familymembers on the different evaluationmetrics. Therefore, the users of the index can
select their preferred trade-off between the spatial and temporal correlationmetrics.

As an application of this framework, the reported results show that the framework can substantially improve
the performance of the Emanual andNolanGenesis Potential Index (ENGPI) performance in terms of both
spatial and temporal correlation. Selecting a solutionwith a balanced improvement of the two considered
performancemetrics, we show that one of themost notable improvements over the baseline ENGPI is due to the
selection of absolute vorticity at 600 instead of 850 hPa, which leads to improvements in spatial correlation of

Figure 5.Pareto front found by the optimisation algorithmon the ERA5 dataset.

Figure 6.Pareto front found by the optimisation algorithmon theMERRA2 dataset.
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about 8%.Also, the results suggest that the two thermodynamic variables (relative humidity andMPI) hinder
the ability of the index to capture the interannual variability of TCG, and that lowering their weight in the
equation by assigning small exponents to themmay lead to values of TC interannual variability closer to the
observations.

Figure 7. Spatial distribution of IBTrACS (panel A) compared to solution (a) (panel B). The unit ofmeasure is the number of TCs per
year.

Table 2.Performance of the solutions selected fromfigures 5 and 6. Each horizontal block of
the table reports a solution, with the corresponding equation at the bottomof the block. The
second column indicates onwhich dataset the solutionwas optimised, whereas columns four
andfive indicate onwhich dataset the reported evaluationmetrics were calculated.

Evaluated on

Solution Optimised on Evaluationmetric ERA5 MERRA2

(a) ERA5 Rspatial 0.493 0.500

Rseasonal 0.978 0.978

Rtemporal 0.570 0.310

h= + -
-oGPI a V e91.0 20.0 10S

RH MPI
,850 250

3.0
37.4 54.0 600

5 1.3 2.51
0.4 0.3

( ) ( ) ∣ ∣( )

(b) ERA5 Rspatial 0.696 0.700

Rseasonal 0.990 0.985

Rtemporal 0.430 0.260

h= + -
-oGPI b V e98.9 23.5 10S

RH MPI
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2.9
43.7 68.4 600

5 2.0 3.0700
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(c) ERA5 Rspatial 0.727 0.741

Rseasonal 0.988 0.985

Rtemporal 0.219 0.055

h= + -
-oGPI c V e91.2 44.3 10S

RH MPI
,600 250

2.9
70.6 71.6 500

5 2.1 2.9600
3.0 2.6

( ) ( ) ∣ ∣
(d) MERRA2 Rspatial 0.046 −0.005

Rseasonal 0.483 0.05

Rtemporal 0.391 0.617

h= + -oGPI d V e14.7 99.2 10S
RH MPI

,250 50
0.6

77.2 99.3 1000
5 2.1 2.11000

3.0 0.6
( ) ( ) ∣ ∣

(e) MERRA2 Rspatial 0.688 0.718

Rseasonal 0.961 0.966

Rtemporal 0.279 0.393

h= + -
-oGPI e V e15.9 28.4 10S

RH MPI
,500 200

2.5
75.5 88.6 600

5 2.0 1.9100
1.9 0.6

( ) ( ) ∣ ∣
(f) MERRA2 Rspatial 0.713 0.752

Rseasonal 0.989 0.984

Rtemporal 0.168 0.165

h= + -
-oGPI f V e20.3 18.3 10S

RH MPI
,500 250

2.4
75.8 94.8 600

5 2.1 1.7600
3.0 2.7

( ) ( ) ∣ ∣
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Theflexibility of the framework allows for tests similar to the one carried here to be repeated under different
conditions: using different data, different input variables, different baseline indices, and different optimisation
algorithms altogether. Futurework should aim to extend the proposed framework to these different settings.
Furthermore, future work should explore the option of selecting new inputs for the ENGPI by using an input
variable selection algorithm.

Figure 8. Interannual variability curves for solution (a). Although the correlation between the two curves is reasonably high, the two
still appear to be quite different, especially in the distance between peaks.

Figure 9. Spatial distribution of IBTrACS (panel A) compared to solution (a) evaluated onERA5 (panel B) and onMERRA2 (panel C).
The unit ofmeasure is the number of TCs per year.
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