Recent European Community directives introduce Renewable Energy Communities (REC) and Jointly Acting Renewable Self-Consumers (JARSC). Both entities are constituted by communities of residential and/or non-residential prosumers, located in proximity of renewable generators and Electrical Storage Systems (ESS) owned and managed by the REC/JARSCs. These aggregations of prosumers are aimed at providing environ-mental and economic benefits by maximizing their global self-consumption. In this frame, it is relevant to introduce a control strategy which considers the whole system represented by the REC/JARSCs and performs optimal management of energy production, storage and consumption. The present paper proposes a Model Predictive Control (MPC) based control design, targeted at the minimization of electricity cost and equivalent CO2 emissions, considering the whole ensemble of loads included in the REC/JARSCs over a 24-h prediction horizon. To exploit the MPC ability of including forecasts in the optimization problem, predictors including Artificial Neural Networks (ANN) are developed for solar irradiance, air temperature, electricity price and carbon intensity. The proposed control performance is evaluated considering a case study located in Milan, Italy, and its advantages with respect to traditional control algorithms are highlighted by comprehensive numerical simula-tions. Lastly, an economic evaluation of the considered system is presented.
Combined model predictive control and ANN-based forecasters for jointly acting renewable self-consumers: An environmental and economical evaluation
Negri, S;Tironi, E
2022-01-01
Abstract
Recent European Community directives introduce Renewable Energy Communities (REC) and Jointly Acting Renewable Self-Consumers (JARSC). Both entities are constituted by communities of residential and/or non-residential prosumers, located in proximity of renewable generators and Electrical Storage Systems (ESS) owned and managed by the REC/JARSCs. These aggregations of prosumers are aimed at providing environ-mental and economic benefits by maximizing their global self-consumption. In this frame, it is relevant to introduce a control strategy which considers the whole system represented by the REC/JARSCs and performs optimal management of energy production, storage and consumption. The present paper proposes a Model Predictive Control (MPC) based control design, targeted at the minimization of electricity cost and equivalent CO2 emissions, considering the whole ensemble of loads included in the REC/JARSCs over a 24-h prediction horizon. To exploit the MPC ability of including forecasts in the optimization problem, predictors including Artificial Neural Networks (ANN) are developed for solar irradiance, air temperature, electricity price and carbon intensity. The proposed control performance is evaluated considering a case study located in Milan, Italy, and its advantages with respect to traditional control algorithms are highlighted by comprehensive numerical simula-tions. Lastly, an economic evaluation of the considered system is presented.File | Dimensione | Formato | |
---|---|---|---|
Postprint.pdf
embargo fino al 31/10/2024
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
874.95 kB
Formato
Adobe PDF
|
874.95 kB | Adobe PDF | Visualizza/Apri |
1-s2.0-S0960148122010606-main.pdf
Accesso riservato
:
Publisher’s version
Dimensione
1.46 MB
Formato
Adobe PDF
|
1.46 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.