Analytical QoT models require safety margins to account for uncertain knowledge of input parameters. We propose and evaluate a design procedure that gradually decreases these margins in presence of multiple physical-layer uncertainties, by leveraging monitoring data to build a ML-based QoT regressor.
Low-Margin Optical-Network Design with Multiple Physical-Layer Parameter Uncertainties
Karandin O.;Musumeci F.;Tornatore M.
2022-01-01
Abstract
Analytical QoT models require safety margins to account for uncertain knowledge of input parameters. We propose and evaluate a design procedure that gradually decreases these margins in presence of multiple physical-layer uncertainties, by leveraging monitoring data to build a ML-based QoT regressor.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
ECOC_2022.pdf
accesso aperto
:
Pre-Print (o Pre-Refereeing)
Dimensione
308.13 kB
Formato
Adobe PDF
|
308.13 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.