Dysgraphia is a neurodevelopmental disorder specific to handwriting. Classical diagnosis is based on the evaluation of speed and quality of the final handwritten text: it is therefore delayed as it is conducted only when handwriting is mastered, in addition to being highly language-dependent and not always easily accessible. This work presents a solution able to anticipate dysgraphia screening when handwriting has not been learned yet, in order to prevent negative consequences on the individuals' academic and daily life. To quantitatively measure handwriting-related characteristics and monitor their evolution over time, we leveraged the Play-Draw-Write iPad application to collect data produced by children from the last year of kindergarten through the second year of elementary school. We developed a meta-model based on deep learning techniques (ensemble techniques and Quasi-SVM) which receives as input raw signals collected after a processing phase based on dimensionality reduction techniques (autoencoder and Time2Vec) and mathematical tools for high-level feature extraction (Procrustes Analysis). The final dysgraphia classifier can identify "at-risk" children with 84.62% Accuracy and 100% Precision more than two years earlier than current diagnostic techniques.

Deep Learning and Procrustes Analysis for Early Dysgraphia Risk Detection with a Tablet Application

Lomurno, Eugenio;Dui, Linda Greta;Gatto, Madhurii;Bollettino, Matteo;Matteucci, Matteo;Ferrante, Simona
2023-01-01

Abstract

Dysgraphia is a neurodevelopmental disorder specific to handwriting. Classical diagnosis is based on the evaluation of speed and quality of the final handwritten text: it is therefore delayed as it is conducted only when handwriting is mastered, in addition to being highly language-dependent and not always easily accessible. This work presents a solution able to anticipate dysgraphia screening when handwriting has not been learned yet, in order to prevent negative consequences on the individuals' academic and daily life. To quantitatively measure handwriting-related characteristics and monitor their evolution over time, we leveraged the Play-Draw-Write iPad application to collect data produced by children from the last year of kindergarten through the second year of elementary school. We developed a meta-model based on deep learning techniques (ensemble techniques and Quasi-SVM) which receives as input raw signals collected after a processing phase based on dimensionality reduction techniques (autoencoder and Time2Vec) and mathematical tools for high-level feature extraction (Procrustes Analysis). The final dysgraphia classifier can identify "at-risk" children with 84.62% Accuracy and 100% Precision more than two years earlier than current diagnostic techniques.
2023
File in questo prodotto:
File Dimensione Formato  
11311-1231791_Lomurno.pdf

accesso aperto

: Publisher’s version
Dimensione 1.48 MB
Formato Adobe PDF
1.48 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1231791
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact