Recent studies highlighted the need to investigate the sustainability of innovative cement-based composites. In this regard, some works focused their attention on the use of Super Absorbent Polymers (SAPs) blended into the concrete matrix also employed to promote the autogenous healing, which can result into extended durability. In this study the Life Cycle Assessment (LCA) methodology takes into account the impacts associated to the whole service life of a structure. Thus, the eco-profile of a wall made up of concrete containing SAPs, was compared to the one of a reference wall without those additions. Four scenarios were considered to estimate the frequency of the repairing activities needed because of the chloride induced corrosion. Two corrosion models were adopted: a uniform one for scenarios 1 and 2, with a service life of 50 and 100 years respectively and the hemispherical pit model, for scenarios 3 and 4 with 50 and 100 years of service life as well. Additionally, a Life Cycle Cost (LCC) analysis was developed to investigate the overall costs. The results highlight the better performances for SAP-containing concrete with a reduction up to 11% for the overall costs and up to 55% for the environmental burdens.

Sustainability and Economic Viability of Self-healing Concrete Containing Super Absorbent Polymers

di Summa, Davide;Ferrara, Liberato
2023-01-01

Abstract

Recent studies highlighted the need to investigate the sustainability of innovative cement-based composites. In this regard, some works focused their attention on the use of Super Absorbent Polymers (SAPs) blended into the concrete matrix also employed to promote the autogenous healing, which can result into extended durability. In this study the Life Cycle Assessment (LCA) methodology takes into account the impacts associated to the whole service life of a structure. Thus, the eco-profile of a wall made up of concrete containing SAPs, was compared to the one of a reference wall without those additions. Four scenarios were considered to estimate the frequency of the repairing activities needed because of the chloride induced corrosion. Two corrosion models were adopted: a uniform one for scenarios 1 and 2, with a service life of 50 and 100 years respectively and the hemispherical pit model, for scenarios 3 and 4 with 50 and 100 years of service life as well. Additionally, a Life Cycle Cost (LCC) analysis was developed to investigate the overall costs. The results highlight the better performances for SAP-containing concrete with a reduction up to 11% for the overall costs and up to 55% for the environmental burdens.
2023
Advances in Sustainable Construction Materials and Structures
978-3-031-21734-0
978-3-031-21735-7
Self-healing concrete, LCA, LCC, Superabsorbent polymers, sustainability
File in questo prodotto:
File Dimensione Formato  
Sustainability and economic viability of self-healing concrete containing Superabsorbent polymers revLF20210706.pdf

Accesso riservato

Descrizione: RILEM 75th week with di Summa et al
: Pre-Print (o Pre-Refereeing)
Dimensione 199.57 kB
Formato Adobe PDF
199.57 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1231530
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact