The life cycle of plastic is a key source of carbon emissions. Yet, global plastics production has quadrupled in 40 years and only 9 % has been recycled. If these trends continue, carbon emissions from plastic wastes would reach 15 % of global carbon budgets by 2050. An approach to reducing plastic waste is to use distributed recycling for additive manufacturing (DRAM) where virgin plastic products are replaced by locally manufactured recycled plastic products that have no transportation-related carbon emissions. Unfortunately, the design of most 3-D printers forces an increase in the machine cost to expand for recycling plastic at scale. Recently, a fused granular fabrication (FGF)/fused particle fabrication (FPF) large-scale printer was demonstrated with a GigabotX extruder based on the open source cable driven Hangprinter concept. To further improve that system, here a lower-cost recyclebot direct waste plastic extruder is demonstrated and the full designs, assembly and operation are detailed. The <$1,700 machine’s accuracy and printing performance are quantified, and the printed parts mechanical strength is within the range of other systems. Along with support from the Hangprinter and DUET3 communities, open hardware developers have a rich ecosystem to modify in order to print directly from waste plastic for DRAM.

Hangprinter for large scale additive manufacturing using fused particle fabrication with recycled plastic and continuous feeding

Romani, Alessia;
2023-01-01

Abstract

The life cycle of plastic is a key source of carbon emissions. Yet, global plastics production has quadrupled in 40 years and only 9 % has been recycled. If these trends continue, carbon emissions from plastic wastes would reach 15 % of global carbon budgets by 2050. An approach to reducing plastic waste is to use distributed recycling for additive manufacturing (DRAM) where virgin plastic products are replaced by locally manufactured recycled plastic products that have no transportation-related carbon emissions. Unfortunately, the design of most 3-D printers forces an increase in the machine cost to expand for recycling plastic at scale. Recently, a fused granular fabrication (FGF)/fused particle fabrication (FPF) large-scale printer was demonstrated with a GigabotX extruder based on the open source cable driven Hangprinter concept. To further improve that system, here a lower-cost recyclebot direct waste plastic extruder is demonstrated and the full designs, assembly and operation are detailed. The <$1,700 machine’s accuracy and printing performance are quantified, and the printed parts mechanical strength is within the range of other systems. Along with support from the Hangprinter and DUET3 communities, open hardware developers have a rich ecosystem to modify in order to print directly from waste plastic for DRAM.
2023
Open hardware, 3D printing, FGF printing, Hangprinter, Recyclebot, Pellet extrusion, Waste plastic, Recycling, Open source hardware
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S2468067223000081-main.pdf

accesso aperto

Descrizione: Main Text
: Publisher’s version
Dimensione 38.72 MB
Formato Adobe PDF
38.72 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1230031
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 4
social impact