We consider reaction-diffusion equations driven by the p-Laplacian on noncompact, infinite volume manifolds assumed to support the Sobolev inequality and, in some cases, to have L2 spectrum bounded away from zero, the main example we have in mind being the hyperbolic space of any dimension. It is shown that, under appropriate conditions on the parameters involved and smallness conditions on the initial data, global in time solutions exist and suitable smoothing effects, namely explicit bounds on the L∞ norm of solutions at all positive times, in terms of Lq norms of the data. The geometric setting discussed here requires significant modifications w.r.t. the Euclidean strategies.
Global existence for reaction-diffusion evolution equations driven by the p-Laplacian on manifolds
Grillo G.;Punzo F.
2023-01-01
Abstract
We consider reaction-diffusion equations driven by the p-Laplacian on noncompact, infinite volume manifolds assumed to support the Sobolev inequality and, in some cases, to have L2 spectrum bounded away from zero, the main example we have in mind being the hyperbolic space of any dimension. It is shown that, under appropriate conditions on the parameters involved and smallness conditions on the initial data, global in time solutions exist and suitable smoothing effects, namely explicit bounds on the L∞ norm of solutions at all positive times, in terms of Lq norms of the data. The geometric setting discussed here requires significant modifications w.r.t. the Euclidean strategies.File | Dimensione | Formato | |
---|---|---|---|
10.3934_mine.2023070.pdf
accesso aperto
:
Publisher’s version
Dimensione
476.42 kB
Formato
Adobe PDF
|
476.42 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.