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Abstract: We consider reaction-diffusion equations driven by the p-Laplacian on noncompact, infinite
volume manifolds assumed to support the Sobolev inequality and, in some cases, to have L2 spectrum
bounded away from zero, the main example we have in mind being the hyperbolic space of any
dimension. It is shown that, under appropriate conditions on the parameters involved and smallness
conditions on the initial data, global in time solutions exist and suitable smoothing effects, namely
explicit bounds on the L∞ norm of solutions at all positive times, in terms of Lq norms of the data. The
geometric setting discussed here requires significant modifications w.r.t. the Euclidean strategies.
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1. Introduction

We investigate existence of nonnegative global in time solutions to the quasilinear parabolic problemut = div
(
|∇u|p−2∇u

)
+ uσ in M × (0,T )

u = u0 in M × {0} ,
(1.1)

where M is an N-dimensional, complete, noncompact, Riemannian manifold of infinite volume, whose
metric is indicated by g, and where div and ∇ are respectively the divergence and the gradient with
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respect to g and T ∈ (0,+∞]. We shall assume throughout this paper that

2N
N + 1

< p < N, σ > p − 1. (1.2)

The problem is posed in the Lebesgue spaces

Lq(M) =

v : M → R measurable , ‖v‖Lq :=
(∫

M
vq dµ

)1/q

< +∞

 ,
where µ is the Riemannian measure on M. We also assume the validity of the Sobolev inequality:

(Sobolev inequality) ‖v‖Lp∗ (M) ≤
1

Cs,p
‖∇v‖Lp(M) for any v ∈ C∞c (M), (1.3)

where Cs,p > 0 is a constant and p∗ := pN
N−p . In some cases we also assume that the Poincaré inequality

is valid, that is

(Poincaré inequality) ‖v‖Lp(M) ≤
1

Cp
‖∇v‖Lp(M) for any v ∈ C∞c (M), (1.4)

for some Cp > 0. Observe that, for instance, (1.3) holds if M is a Cartan-Hadamard manifold, i.e., a
simply connected Riemannian manifold with nonpositive sectional curvatures, while (1.4) is valid
when M is a Cartan-Hadamard manifold satisfying the additional condition of having sectional
curvatures bounded above by a constant −c < 0 (see, e.g., [15, 16]). Therefore, as it is well known, on
RN (1.3) holds, but (1.4) fails, whereas on the hyperbolic space both (1.3) and (1.4) are fulfilled.

Global existence and finite time blow-up of solutions for problem (1.1) has been deeply studied
when M = RN , especially in the case p = 2 (linear diffusion). The literature for this problem is huge
and there is no hope to give a comprehensive review here. We just mention the fundamental result of
Fujita, see [10], who shows that blow-up in a finite time occurs for all nontrivial nonnegative data when
σ < 1 + 2

N , while global existence holds, for σ > 1 + 2
N , provided the initial datum is small enough in a

suitable sense. Furthermore, the critical exponent σ = 1+ 2
N , belongs to the case of finite time blow-up,

see e.g., [22] for the one dimensional case, N = 1, or [23] for N > 1. For further results concerning
problem (1.1) with p = 2 see e.g., [7, 9, 11, 20, 26, 34–36, 41–43]).

Similarly, the case of problem (1.1) when M = RN and p > 1 has attracted a lot of attention, see
e.g., [12–14, 30–33] and references therein. In particular, in [31], nonexistence of nontrivial weak
solutions is proved for problem (1.1) with M = RN and

p >
2N

N + 1
, max{1, p − 1} < σ ≤ p − 1 +

p
N
.

Similar weighted problems have also been treated. In fact, for any strictly positive measurable function
ρ : RN → R, let us consider the weighted Lq

ρ spaces

Lq
ρ(R

N) =

v : RN → R measurable , ‖v‖Lq
ρ

:=
(∫
RN

vqρ(x) dx
)1/q

< +∞

 .
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In [27] problem ρ(x)ut = div
(
|∇u|p−2∇u

)
+ ρ(x)uσ in RN × (0,T )

u = u0 in RN × {0} ,
(1.5)

is addressed. In [27, Theorem 1], it is showed that, when p > 2, ρ(x) = (1 + |x|)−l, 0 ≤ l < p,
σ > p − 1 +

p
N , u0 ∈ L1

ρ(R
N) ∩ Ls

ρ(R
N) is sufficiently small, with s > (N−l)(σ−p+1)

p−l , then problem (1.5)
admits a global in time solution. Moreover, the solution satisfies a smoothing estimate L1

ρ − L∞, in
the sense that for sufficiently small data u0 ∈ L1

ρ(R
N), the corresponding solution is bounded, and

a quantitive bound on the L∞ norm of the solution holds, in term of the L1
ρ(R

N) norm of the initial
datum. On the other hand, in [27, Theorem 2], when p > 2, ρ(x) = (1 + |x|)−l, l ≥ p, σ > p − 1,
u0 ∈ L1

ρ(R
N) ∩ Ls

ρ(R
N) is sufficiently small, with s > N

p (σ−p + 1), then problem (1.5) admits a global
in time solution, which is bounded for positive times.

On the other hand, existence and nonexistence of global in time solutions to problems closely
related to problem (1.1) have been investigated also in the Riemannian setting. The situation can be
significantly different from the Euclidean situation, especially in the case of negative curvature.
Infact, when dealing with the case of the N-dimensional hyperbolic space, M = HN , it is known that
when p = 2, for all σ > 1 and sufficiently small nonnegative data there exists a global in time
solution, see [3, 34, 39, 40]. A similar result has been also obtain when M is a complete, noncompact,
stochastically complete Riemannian manifolds with λ1(M) > 0, where λ1(M) := inf spec(−∆),
see [19]. Stochastic completeness amounts to requiring that the linear heat semigroup preserves the
identity, and is known to hold e.g., if the sectional curvature satisfies sec(x) ≥ −cd(x, o)2 for all x ∈ M
outside a given compact, and a suitable c > 0, where d is the Riemannian distance and o is a given
pole. Besides, it is well known that λ1(M) > 0 e.g., if sec(x) ≤ −c < 0 for all x ∈ M. Therefore, the
class of manifolds for which the results of [19] hold is large, since it includes e.g., all
Cartan-Hadamard manifolds with curvature bounded away from zero and not diverging faster than
quadratically at infinity.

Concerning problem (1.1) with p > 1, we refer the reader to [28, 29] and references therein. In
particular, in [28], nonexistence of global in time solutions on infinite volume Riemannian manifolds
M is shown under suitable weighted volume growth conditions. In [29], problem (1.1) with M = Ω

being a bounded domain and uσ replaced by V(x, t)uσ is addressed, where V is a positive potential.
To be specific, nonexistence of nonnegative, global solutions is established under suitable integral
conditions involving V , p and σ.

In this paper, we prove the following results. Assume that the bounds (1.2) and the Sobolev
inequality (1.3) hold, and besides that σ > p − 1 +

p
N .

(a) If u0 ∈ Ls(M) ∩ L1(M) is sufficiently small, with s > (σ−p + 1) N
p , then a global solution exists.

Furthermore, a smoothing estimate of the type L1 − L∞ holds (see Theorem 2.2).
(b) If u0 ∈ L(σ−p+1) N

p (M) is sufficiently small, then a global solution exists. Furthermore, a smoothing
estimate of the type L(σ−p+1) N

p −L∞ holds (see Theorem 2.4), this being new even in the Euclidean
case.

(c) In addition, in both the latter two cases, we establish a L(σ−p+1) N
p −Lq smoothing estimate, for any

(σ−p + 1) N
p ≤ q < +∞ and an Lq − Lq estimate for any 1 < q < +∞, for suitable initial data u0.

Now suppose that both the Sobolev inequality (1.3) and the Poincaré inequality (1.4) hold, and
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that (1.2) holds. This situation has of course no Euclidean analogue, as it is completely different from
the case of a bounded Euclidean domain since M is noncompact and of infinite measure. Then:

(d) If u0 ∈ Ls(M) ∩ Lσ N
p (M) is sufficiently small, with s > max

{
(σ−p + 1) N

p , 1
}
, then a global

solution exists. Furthermore, a smoothing estimate of the type Ls − L∞ holds (see Theorem 2.7).
(e) In addition, we establish and Lσ N

p − Lq estimate, for any σ N
p ≤ q < +∞ and an Lq − Lq estimate

for any 1 < q < +∞, for suitable initial data u0.

Note that, when we require both (1.3) and (1.4), the assumption on σ can be relaxed.
In order to prove (a), we adapt the methods exploited in [27, Theorem 1]. Moreover, (b), (c) and

(e) are obtained by means of an appropriate use of the Moser iteration technique, see also [18] for a
similar result in the case of the porous medium equation with reaction. The proof of statement (d) is
inspired [27, Theorem 2]; however, significant changes are needed since in [27] the precise form of the
weight ρ is used.

As concerns smoothing effects for general nonlinear evolution equations, we refer the reader to the
fundamental works of Bénilan [4] and, slightly later but with considerable further generality and
methodological simplifications, Véron [38]. Recently, Coulhon and Hauer further generalize such
results and give new and abstract ones which even allow to avoid Moser’s iteration in a very general
functional analytic setting, through an extrapolation argument, see [8]. It should also be remarked
that, though we deal with weak solutions to our problems, it is certainly possible to prove existence of
solution in stronger senses, e.g., the strong one according to Bénilan and Crandall seminal
contribution [5]. In this regard, we also refer to the recent paper [21], in which existence results are
proved also for parabolic equations governed by the p-Laplace operator with Lipschitz lower-order
terms. We also mention that several important and seminal contributions to regularity results for
solutions of general nonlinear parabolic equations and systems can be found in several works by
Mingione, see e.g., [1, 6, 24].

The paper is organized as follows. The main results are stated in Section 2. Section 3 is devoted to
Lq0−Lq and Lq−Lq smoothing estimates, mainly instrumental to what follows. Some a priori estimates
are obtained in Section 4. In Sections 5–7, Theorems 2.2, 2.4 and 2.7 are proved, respectively. Finally,
in Section 8 we state similar results for the porous medium equation with reaction; the proofs are
omitted since they are entirely similar to the p-Laplacian case.

2. Statements of the main results

Solutions to (1.1) will be meant in the weak sense, according to the following definition.

Definition 2.1. Let M be a complete noncompact Riemannian manifold of infinite volume. Let p > 1,
σ > p − 1 and u0 ∈ L1

loc(M), u0 ≥ 0. We say that the function u is a weak solution to problem (1.1) in
the time interval [0,T ) if

u ∈ L2((0,T ); W1,p
loc (M)) ∩ Lσloc(M × (0,T ))

and for any ϕ ∈ C∞c (M × [0,T ]) such that ϕ(x,T ) = 0 for any x ∈ M, u satisfies the equality:

−

∫ T

0

∫
M

uϕt dµ dt = −

∫ T

0

∫
M
|∇u|p−2 〈∇u,∇ϕ〉 dµ dt +

∫ T

0

∫
M

uσ ϕ dµ dt

+

∫
M

u0(x)ϕ(x, 0) dµ.
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First we consider the case that σ > p − 1 +
p
N and that the Sobolev inequality holds on M. In order

to state our results, we define

σ0 := (σ−p + 1)
N
p
. (2.1)

Observe that σ0 > 1 whenever σ > p−1+
p
N . Our first result is a generalization of [27] to the geometric

setting considered here.

Theorem 2.2. Let M be a complete, noncompact, Riemannian manifold of infinite volume such that
the Sobolev inequality (1.3) holds. Assume (1.2) holds and, besides, that σ > p − 1 +

p
N , s > σ0 and

u0 ∈ Ls(M) ∩ L1(M), u0 ≥ 0 where σ0 has been defined in (2.1).

(i) Assume that
‖u0‖Ls(M) < ε0, ‖u0‖L1(M) < ε0 , (2.2)

with ε0 = ε0(σ, p,N,Cs,p) > 0 sufficiently small. Then problem (1.1) admits a solution for any
T > 0, in the sense of Definition 2.1. Moreover, for any τ > 0, one has u ∈ L∞(M × (τ,+∞)) and
there exists a constant Γ > 0 such that, one has

‖u(t)‖L∞(M) ≤ Γ t−α ‖u0‖
p

N(p−2)+p

L1(M) for all t > 0, (2.3)

where
α :=

N
N(p − 2) + p

.

(ii) Let σ0 ≤ q < ∞. If
‖u0‖Lσ0 (M) < ε̂0 (2.4)

for ε̂0 = ε̂0(σ, p,N,Cs,p, q) > 0 small enough, then there exists a constant
C = C(σ, p,N, ε̂0,Cs,p, q) > 0 such that

‖u(t)‖Lq(M) ≤ C t−γq‖u0‖
δq

Lσ0 (M) for all t > 0 , (2.5)

where

γq =
1

σ−1

[
1 −

N(σ−p + 1)
pq

]
, δq =

σ−p + 1
σ−1

[
1 +

N(p − 2)
pq

]
.

(iii) Finally, for any 1 < q < ∞, if u0 ∈ Lq(M) ∩ Lσ0(M) and

‖u0‖Lσ0 (M) < ε (2.6)

with ε = ε(σ, p,N,Cs,p, q) > 0 sufficiently small, then

‖u(t)‖Lq(M) ≤ ‖u0‖Lq(M) for all t > 0 . (2.7)

Remark 2.3. Observe that the choice of ε0 in (2.2) is made in Lemma 5.1. Moreover, the proof of the
above theorem will show that one can take an explicit value of ε̂0 in (2.4) and ε in (2.6). In fact, let
q0 > 1 be fixed and {qn}n∈N be the sequence defined by:

qn =
N

N − p
(p + qn−1 − 2), for all n ∈ N,
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so that

qn =

(
N

N − p

)n

q0 +
N

N − p
(p − 2)

n−1∑
i=0

(
N

N − p

)i

. (2.8)

Clearly, {qn} is increasing and qn −→ +∞ as n→ +∞. Fix q ∈ [q0,+∞) and let n̄ be the first index such
that qn̄ ≥ q. Define

ε̃0 = ε̃0(σ, p,N,Cs,p, q, q0) :=
[
min

{
min

n=0,...,n̄

(
p(qn − 1)1/p

p + qn − 2

)p

;
(

p(σ0 −1)1/p

p − σ0 −2

)p} Cp
s,p

2

] 1
σ−p+1

. (2.9)

Observe that ε̃0 in (2.9) depends on the value q through the sequence {qn}. More precisely, n̄ is
increasing with respect to q, while the quantity minn=0,...,n̄(qn − 1)

(
p

p+qn−2

)p Cp
s,p

2 decreases w.r.t. q.
Then, in (2.4) we can take

ε̂0 = ε̂0(σ, p,N,Cs,p, q) = ε̃0(σ, p,N,Cs,p, q, σ0) .

Similarly, in (2.6), we can take
ε = ε̄0 ∧ ε̂0,

where

ε̄0 = ε̄0(σ, p,Cs,p, q) :=
[
min

{(
p(q − 1)1/p

p + q − 2

)p

Cp
s,p;

(
p(σ0 −1)1/p

p − σ0 −2

)p

Cp
s,p

}] 1
σ−p+1

.

The next result involves a similar smoothing effect for a different class of data. Such result seems
to be new also in the Euclidean setting.

Theorem 2.4. Let M be a complete, noncompact, Riemannian manifold of infinite volume such that
the Sobolev inequality (1.3) holds. Assume (1.2) and, besides, that σ > p − 1 +

p
N and u0 ∈ Lσ0(M),

u0 ≥ 0, with σ0 as in (2.1). Assume that

‖u0‖Lσ0 (M) < ε2 , (2.10)

with ε2 = ε2(σ, p,N,Cs,p, q) > 0 sufficiently small. Then problem (1.1) admits a solution for any
T > 0, in the sense of Definition 2.1. Moreover, for any τ > 0, one has u ∈ L∞(M × (τ,+∞)) and for
any σ > σ0, there exists a constant Γ > 0 such that, one has

‖u(t)‖L∞(M) ≤ Γ t−
1

σ−1 ‖u0‖
σ−p+1
σ−1

Lσ0 (M) for all t > 0. (2.11)

Moreover, (ii) and (iii) of Theorem 2.2 hold.

Remark 2.5. We comment that, as in Remark 2.3, one can choose an explicit value for ε2 in (2.10). In
fact, let q0 = σ0 in (2.9). It can be shown that one can take, with this choice of q0:

ε2 = ε2(σ, p,N,Cs,p, σ0) := min

ε̃0(σ, p,N,Cs,p, q, σ0) ;
(

1
C C̃

) 1
σ−p+1

 ,

where C > 0 and C̃ > 0 are defined in Proposition 3.3 and Lemma 4.3, respectively.
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Remark 2.6. Observe that, due to the assumption σ > p − 1 +
p
N , one has

1
σ−1

<
N

N(p − 2) + p
.

Hence, for large times, the decay given by Theorem 2.4 is worse than the one of Theorem 2.2; however,
in this regards, note that the assumptions on the initial datum u0 are different in the two theorems. On
the other hand, estimates (2.11) and (2.3), are not sharp in general for small times. For example, when
u0 ∈ L∞(M), u(t) remains bounded for any t ∈ [0,T ), where T is the maximal existence time.

In the next theorem, we address the case σ > p − 1, assuming that both the inequalities (1.3)
and (1.4) hold on M, hence with stronger assumptions on the manifold considered. This has of course
no Euclidean analogue, as the noncompactness of the manifold considered, as well as the fact that it
has infinite volume, makes the situation not comparable to the case of a bounded Euclidean domain.

Theorem 2.7. Let M be a complete, noncompact manifold of infinite volume such that the Sobolev
inequality (1.3) and the Poincaré inequality (1.4) hold. Assume that (1.2) holds, and besides that
p > 2. Let u0 ≥ 0 be such that u0 ∈ Ls(M) ∩ Lσ

N
p (M), for some s > max {σ0, 1} and q0 > 1. Assume

also that
‖u0‖Ls(M) < ε1, ‖u0‖Lσ

N
p (M)

< ε1,

with ε1 = ε1(σ, p,N,Cs,p,Cp, s) sufficiently small. Then problem (1.1) admits a solution for any T > 0,
in the sense of Definition 2.1. Moreover, for any τ > 0, one has u ∈ L∞(M × (τ,+∞)) and, for any
q > s, there exists a constant Γ > 0 such that, one has

‖u(t)‖L∞(BR) ≤ Γ t−βq,s ‖u0‖
ps

N(p−2)+pq

Ls(BR) for all t > 0, (2.12)

where

βq,s :=
1

p − 2

(
1 −

ps
N(p − 2) + pq

)
> 0 .

Moreover, let s ≤ q < ∞ and
‖u0‖Ls(M) < ε̂1

for ε̂1 = ε̂1(σ, p,N,Cs,p,Cp, q, s) small enough. Then there exists a constant
C = C(σ, p,N, ε1,Cs,p,Cp, q, s) > 0 such that

‖u(t)‖Lq(M) ≤ C t−γq‖u0‖
δq

Ls(M) for all t > 0 , (2.13)

where

γq =
s

p − 2

[
1
s
−

1
q

]
, δq =

s
q
.

Finally, for any 1 < q < ∞, if u0 ∈ Lq(M) ∩ Ls(M) and

‖u0‖Ls(M) < ε

with ε = ε(σ, p,N,Cs,p,Cp, q) sufficiently small, then

‖u(t)‖Lq(M) ≤ ‖u0‖Lq(M) for all t > 0 . (2.14)
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Remark 2.8. It is again possible to give an explicit estimate on the smallness parameter ε1 above. In
fact, let q0 > 1 be fixed and {qm}m∈N be the sequence defined by:

qm = p + qm−1 − 2, for all m ∈ N,

so that
qm = q0 + m(p − 2). (2.15)

Clearly, {qm} is increasing and qm −→ +∞ as m → +∞. Fix q ∈ [q0,+∞) and let m̄ be the first index
such that qm̄ ≥ q. Define ε̃1 = ε̃1(σ, p,N,Cs,p,Cp, q, q0) such that

ε̃1 := min


[

min
m=0,...,m̄

(
p(qm − 1)1/p

p + qm − 2

)p

C
] σ+p+qm−2
σ(σ+qm−1)−p(p+qm−2)

;


 p(σ N

p − 1)1/p

(p + σ N
p − 2)

p

C


σ+p+σ N

p −2

σ(σ+σ N
p −1)−p(p+σ N

p −2)


where C = C̃ Cp( p−1

σ )
p and C̃ = C̃(Cs, p, σ, q) > 0 is defined in (3.37). Observe that ε̃1 depends on

q through the sequence {qm}. More precisely, m̄ is increasing with respect to q, while the quantity
minm=0,...,m̄

(
p(qm−1)1/p

p+qm−2

)p
C decreases w.r.t. qm. Furthermore, let δ1 > 0 be such that

C̃ δ
ps(σ−1)

N(p−2)+ps

1 +
C C̃

4
δ

ps(σ−1)
N(p−2)+pq

1 < 1 ,

where C > 0 and C̃ > 0 are defined in Proposition 3.3 and Lemma 4.3, respectively. Then, let q0 = s
with s as in Theorem 2.7 and define

ε1 = ε1(σ, p,N,Cs,p,Cp, q, s) = min
{
ε̃1(σ, p,N,Cs,p,Cp, q, s) ; δ1

}
.

3. Lq − Lq and Lq0 − Lq estimates

Let x0, x ∈ M. We denote by r(x) = dist (x0, x) the Riemannian distance between x0 and x.
Moreover, we let BR(x0) := {x ∈ M : dist (x0, x) < R} be the geodesic ball with centre x0 ∈ M and
radius R > 0. If a reference point x0 ∈ M is fixed, we shall simply denote by BR the ball with centre x0

and radius R. We also recall that µ denotes the Riemannian measure on M.
For any given function v, we define for any k ∈ R+

Tk(v) :=


k if v ≥ k ,

v if |v| < k ,

−k if v ≤ −k ;

. (3.1)

For every R > 0, k > 0, consider the problem
ut = div

(
|∇u|p−2∇u

)
+ Tk(uσ) in BR × (0,+∞)

u = 0 in ∂BR × (0,+∞)
u = u0 in BR × {0},

(3.2)

where u0 ∈ L∞(BR), u0 ≥ 0. Solutions to problem (3.2) are meant in the weak sense as follows.
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Definition 3.1. Let p > 1 and σ > p − 1. Let u0 ∈ L∞(BR), u0 ≥ 0. We say that a nonnegative function
u is a solution to problem (3.2) if

u ∈ L∞(BR × (0,+∞)), u ∈ L2((0,T ); W1,p
0 (BR)

)
for any T > 0,

and for any T > 0, ϕ ∈ C∞c (BR × [0,T ]) such that ϕ(x,T ) = 0 for every x ∈ BR, u satisfies the equality:

−

∫ T

0

∫
BR

uϕt dµ dt = −

∫ T

0

∫
BR

|∇u|p−2〈∇u,∇ϕ〉 dµ dt +

∫ T

0

∫
BR

Tk(uσ)ϕ dµ dt

+

∫
BR

u0(x)ϕ(x, 0) dµ.

3.1. Lq − Lq estimate for σ > σ0

First we consider the case σ > σ0 where σ0 has been defined in (2.1). Moreover, we assume that
the Sobolev inequality (1.3) holds on M.

Lemma 3.2. Assume (1.2) and, besides, thatσ > p−1+
p
N . Assume that inequality (1.3) holds. Suppose

that u0 ∈ L∞(BR), u0 ≥ 0. Let 1 < q < ∞ and assume that

‖u0‖Lσ0 (BR) < ε̄ (3.3)

with ε̄ = ε̄(σ, p, q,Cs,p) > 0 sufficiently small. Let u be the solution of problem (3.2) in the sense of
Definition 3.1, and assume that u ∈ C([0,T ], Lq(BR)) for any q ∈ (1,+∞), for any T > 0. Then

‖u(t)‖Lq(BR) ≤ ‖u0‖Lq(BR) for all t > 0 . (3.4)

Note that the request u ∈ C([0,T ], Lq(BR)) for any q ∈ (1,∞), for any T > 0 is not restrictive,
since we will construct solutions belonging to that class. This remark also applies to several other
intermediate results below.

Proof. Since u0 is bounded and Tk(uσ) is a bounded and Lipschitz function, by standard results, there
exists a unique solution of problem (3.2) in the sense of Definition 3.1. We now multiply both sides of
the differential equation in problem (3.2) by uq−1,∫

BR

ut uq−1 dx =

∫
BR

div
(
|∇u|p−2∇u

)
uq−1 dx +

∫
BR

Tk(uσ) uq−1 dx .

Now, we formally integrate by parts in BR. This can be justified by standard tools, by an approximation
procedure. We get

1
q

d
dt

∫
BR

uq dµ = −(q − 1)
∫

BR

uq−2 |∇u|p dµ +

∫
BR

Tk(uσ) uq−1 dµ . (3.5)

Observe that, thanks to Sobolev inequality (1.3), we have∫
BR

uq−2 |∇u|p dµ =

(
p

p + q − 2

)p ∫
BR

∣∣∣∣∣∇ (
u

p+q−2
p

)∣∣∣∣∣p dµ

≥

(
p

p + q − 2

)p

Cp
s,p

(∫
BR

u
p+q−2

p
pN

N−p dµ
) N−p

N

.

(3.6)
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Moreover, the last term in the right hand side of (3.5), by using the Hölder inequality with exponents
N

N−p and N
p , becomes ∫

BR

Tk(uσ) uq−1 dx ≤
∫

BR

uσ uq−1 dx =

∫
BR

uσ−p+1 up+q−2 dx

≤ ‖u(t)‖σ−p+1

L(σ−p+1) N
p (BR)
‖u(t)‖p+q−2

L
(p+q−2) N

N−p (BR)
.

(3.7)

Combining (3.6) and (3.7) we get

1
q

d
dt
‖u(t)‖qLq(BR) ≤ −

[
(q − 1)

(
p

p + q − 2

)p

Cp
s,p − ‖u(t)‖σ−p+1

Lσ0 (BR)

]
‖u(t)‖p+q−2

L
(p+q−2) N

N−p (BR)
(3.8)

Take T > 0. Observe that, due to hypotheses (3.3) and the known continuity in Lσ0 of the map t 7→ u(t)
in [0,T ], there exists t0 > 0 such that

‖u(t)‖Lσ0 (BR) ≤ 2 ε̄ for any t ∈ [0, t0] .

Hence (3.8) becomes, for any t ∈ (0, t0],

1
q

d
dt
‖u(t)‖qLq(BR) ≤ −

[(
p

p + q − 2

)p

(q − 1)Cp
s,p − (2 ε̄)σ−p+1

]
‖u(t)‖p+q−2

L
(p+q−2) N

N−p (BR)
≤ 0 ,

where the last inequality is obtained by using (3.3). We have proved that t 7→ ‖u(t)‖Lq(BR) is decreasing
in time for any t ∈ (0, t0], thus

‖u(t)‖Lq(BR) ≤ ‖u0‖Lq(BR) for any t ∈ (0, t0] . (3.9)

In particular, inequality (3.9) follows for the choice q = σ0 in view of hypothesis (3.3). Hence we have

‖u(t)‖Lσ0 (BR) ≤ ‖u0‖Lσ0 (BR) < ε̄ for any t ∈ (0, t0] .

Now, we can repeat the same argument in the time interval (t0, t1], with t1 = 2t0. This can be done due
to the uniform continuity of the map t 7→ u(t) in [0,T ]. Hence, we can write that

‖u(t)‖σ−p+1
Lσ0 (BR) ≤ 2 ε̄ for any t ∈ (t0, t1] .

Thus we get
‖u(t)‖Lq(BR) ≤ ‖u0‖Lq(BR) for any t ∈ (0, t1] .

Iterating this procedure we obtain that t 7→ ‖u(t)‖Lq(BR) is decreasing in [0,T ]. Since T > 0 was
arbitrary, the thesis follows.

�

3.2. Lq0 − Lq estimate for σ > σ0

Using a Moser type iteration procedure we prove the following result:
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Proposition 3.3. Assume (1.2) and, besides, that σ > p − 1 +
p
N . Assume that inequality (1.3) holds.

Suppose that u0 ∈ L∞(BR), u0 ≥ 0. Let u be the solution of problem (3.2), so that u ∈ C([0,T ], Lq(BR))
for any q ∈ (1,+∞), for any T > 0. Let 1 < q0 ≤ q < +∞ and assume that

‖u0‖Lσ0 (BR) ≤ ε̃0 (3.10)

for ε̃0 = ε̃0(σ, p,N,Cs,p, q, q0) sufficiently small. Then there exists C(p, q0,Cs,p, ε̃0,N, q) > 0 such that

‖u(t)‖Lq(BR) ≤ C t−γq‖u0‖
δq

Lq0 (BR) for all t > 0 , (3.11)

where

γq =

(
1
q0
−

1
q

)
N q0

p q0 + N(p − 2)
, δq =

q0

q

 q + N
p (p − 2)

q0 + N
p (p − 2)

 . (3.12)

Proof. Let {qn} be the sequence defined in (2.8). Let n̄ be the first index such that qn̄ ≥ q. Observe that
n̄ is well defined in view of the mentioned properties of {qn}, see (2.8). We start by proving a smoothing
estimate from q0 to qn̄ using a Moser iteration technique (see also [2]). Afterwards, if qn̄ ≡ q then the
proof is complete. Otherwise, if qn̄ > q then, by interpolation, we get the thesis.

Let t > 0, we define

r =
t

2n − 1
, tn = (2n − 1)r . (3.13)

Observe that t0 = 0, tn̄ = t, {tn} is an increasing sequence w.r.t. n. Now, for any 1 ≤ n ≤ n, we
multiply Eq (3.2) by uqn−1−1 and integrate in BR × [tn−1, tn]. Thus we get∫ tn

tn−1

∫
BR

ut uqn−1−1 dµ dt −
∫ tn

tn−1

∫
BR

div
(
|∇u|p−2∇u

)
uqn−1−1 dµ dt

=

∫ tn

tn−1

∫
BR

Tk(uσ) uqn−1−1 dµ dt.

Then we integrate by parts in BR× [tn−1, tn]. Due to Sobolev inequality (1.3) and assumption (3.10), we
get

1
qn−1

[
‖u(·, tn)‖qn−1

Lqn−1 (BR) − ‖u(·, tn−1)‖qn−1
Lqn−1 (BR)

]
≤ −

[(
p

p + qn−1 − 2

)p

(qn−1 − 1)Cp
s,p − 2 ε̃0

] ∫ tn

tn−1

‖u(τ)‖p+qn−1−2

L
(p+qn−1−2) N

N−p (BR)
dτ,

(3.14)

where we have made use of inequality Tk(uσ) ≤ uσ. We define qn as in (2.8), so that (p + qn−1 −

2)
N

N − p
= qn. Hence, in view of hypotheses (3.10) we can apply Lemma 3.2 to the integral on the

right hand side of (3.14), hence we get

1
qn−1

[
‖u(·, tn)‖qn−1

Lqn−1 (BR) − ‖u(·, tn−1)‖qn−1
Lqn−1 (BR)

]
≤ −

[(
p

p + qn−1 − 2

)p

(qn−1 − 1)Cp
s,p − 2 ε̃0

]
‖u(·, tn)‖p+qn−1−2

L
(p+qn−1−2) N

N−p (BR)
|tn − tn−1|.

(3.15)
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Observe that
‖u(·, tn)‖qn−1

Lqn−1 (BR) ≥ 0,

|tn − tn−1| =
2n−1 t
2n̄ − 1

.
(3.16)

We define

dn−1 :=
[(

p
p + qn−1 − 2

)p

(qn−1 − 1)Cp
s,p − 2ε̃0

]−1 1
qn−1

. (3.17)

By plugging (3.16) and (3.17) into (3.15) we get

‖u(·, tn)‖p+qn−1−2

L
(p+qn−1−2) N

N−p (BR)
≤

(2n̄ − 1)dn

2n−1 t
‖u(·, tn−1)‖qn−1

Lqn−1 (BR).

The latter can be rewritten as

‖u(·, tn)‖
L

(p+qn−1−2) N
N−p (BR)

≤

(
(2n̄ − 1)dn

2n−1

) 1
p+qn−1−2

t−
1

p+qn−1−2 ‖u(·, tn−1)‖
qn−1

p+qn−1−2

Lqn−1 (BR).

Due to to the definition of the sequence {qn} in (2.8) we write

‖u(·, tn)‖Lqn (BR) ≤

(
(2n̄ − 1)dn−1

2n−1

) N
N−p

1
qn

t−
N

N−p
1

qn ‖u(·, tn−1)‖
qn−1

qn
N

N−p

Lqn−1 (BR) . (3.18)

We define
s :=

N
N − p

. (3.19)

Observe that, for any 1 ≤ n ≤ n̄, we have(
(2n̄ − 1)dn−1

2n−1

)s

=

2n̄ − 1
2n−1

[(
p

p + qn−1 − 2

)p

(qn−1 − 1)Cp
s,p − 2 ε

]−1 1
qn−1


s

=


2n̄ − 1
2n−1

1

qn−1(qn−1 − 1)
(

p
p + qn−1 − 2

)p

Cp
s,p − 2 εqn−1


s

,

(3.20)

and
2n̄ − 1
2n−1 ≤ 2n̄+1 for all 1 ≤ n ≤ n̄. (3.21)

Consider the function

g(x) :=
[
(x − 1)

(
p

p + x − 2

)p

Cp
s,p − 2 ε

]
x for q0 ≤ x ≤ qn̄, x ∈ R.

Observe that, due to (2.9), g(x) > 0 for any q0 ≤ x ≤ qn̄. Moreover, g has a minimum in the interval
q0 ≤ x ≤ qn̄; call x̃ the point at which the minimum is attained. Then we have

1
g(x)

≤
1

g(x̃)
for any q0 ≤ x ≤ qn̄. (3.22)
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Thanks to (3.20)–(3.22), there exist a positive constant C, where C = C(N,Cs,p, ε̃0, n̄, p, q0) such that(
(2n̄ − 1)dn−1

2n−1

)s

≤ C , for all 1 ≤ n ≤ n̄. (3.23)

By plugging (3.19) and (3.23) into (3.18) we get, for any 1 ≤ n ≤ n̄

‖u(·, tn)‖Lqn (BR) ≤ C
1

qn t−
s

qn ‖u(·, tn−1)‖
s qn−1

qn
Lqn−1 (BR) . (3.24)

Let us set
Un := ‖u(·, tn)‖Lqn (BR).

Then (3.24) becomes

Un ≤ C
1

qn t−
s

qn U
qn−1 s

qn
n−1

≤ C
1

qn t−
s

qn

[
C

s
qn t−

s2
qn U

s2 qn−2
qn

k−2

]
≤ ...

≤ C
1

qn

∑n−1
i=0 si

t−
s

qn

∑n−1
i=0 si

U
sn q0

qn
0 .

We define

αn :=
1
qn

n−1∑
i=0

si,

βn :=
s

qn

n−1∑
i=0

si = sαn,

δn := sn q0

qn
.

(3.25)

By substituting n with n̄ into (3.25) we get

αn̄ :=
N − p

p
A
qn̄
,

βn̄ :=
N
p

A
qn̄
,

δn̄ := (A + 1)
q0

qn̄
.

(3.26)

where A :=
(

N
N−p

)n̄
− 1. Hence, in view of (3.13) and (3.26), (3.24) with n = n̄ yields

‖u(·, t)‖Lqn̄ (BR) ≤ C
N−p

p
A
qn̄ t−

N
p

A
qn̄ ‖u0‖

q0
A+1
qn̄

Lq0 (BR) . (3.27)

We have proved a smoothing estimate from q0 to qn̄. Observe that if qn̄ = q then the thesis is proved.
Now suppose that qn̄ > q. Observe that q0 ≤ q < qn̄ and define

B := N(p − 2)A + p q0(A + 1).
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From (3.27) and Lemma 3.2, we get, by interpolation,

‖u(·, t)‖Lq(BR) ≤ ‖u(·, t)‖θLq0 (BR)‖u(·, t)‖1−θLqn̄ (BR)

≤ ‖u0(·)‖θLq0 (BR)C t−
NA
B (1−θ) ‖u0‖

pq0
A+1

B (1−θ)
Lq0 (BR)

= C t−
N A
B (1−θ) ‖u0‖

pq0
A+1

B (1−θ)+θ
Lq0 (BR) ,

(3.28)

where

θ =
q0

q

(
qn̄ − q
qn̄ − q0

)
. (3.29)

Observe that

(i)
NA
B

(1 − θ) =
N
p

(
q − q0

q

)
1

q0 + N
p (p − 2)

;

(ii) p q0
A + 1

B
(1 − θ) + θ =

q0

q

q + N
p (p − 2)

q0 + N
p (p − 2)

.

Combining (3.28), (3.12) and (3.29) we get the claim, noticing that q was arbitrarily in [q0,+∞). �

Remark 3.4. One can not let q → +∞ is the above bound. In fact, one can show that ε −→ 0 as
q → ∞. So in such limit the hypothesis on the norm of the initial datum (2.9) is satisfied only when
u0 ≡ 0.

3.3. Lq − Lq estimates for σ > p − 1

We now consider the case σ > p− 1 and that the Sobolev and Poincaré inequalities (1.3), (1.4) hold
on M.

Lemma 3.5. Assume (1.2) and, besides, that p > 2. Assume that inequalities (1.3) and (1.4) hold.
Suppose that u0 ∈ L∞(BR), u0 ≥ 0. Let 1 < q < ∞ and assume that

‖u0‖Lσ
N
p (BR)

< ε̄1 (3.30)

for a suitable ε̃1 = ε̃1(σ, p,N,Cp,Cs,p, q) sufficiently small. Let u be the solution of problem (3.2) in
the sense of Definition 3.1, such that in addition u ∈ C([0,T ); Lq(BR)). Then

‖u(t)‖Lq(BR) ≤ ‖u0‖Lq(BR) for all t > 0 . (3.31)

Proof. Since u0 is bounded and Tk(uσ) is a bounded and Lipschitz function, by standard results, there
exists a unique solution of problem (3.2) in the sense of Definition 3.1. We now multiply both sides of
the differential equation in problem (3.2) by uq−1, therefore∫

BR

ut uq−1 dµ =

∫
BR

div(|∇u|p−2 ∇u)uq−1 dµ +

∫
BR

Tk(uσ) uq−1 dµ .

We integrate by parts. This can again be justified by a standard approximation procedure. By using the
fact that T (uσ) ≤ uσ, we can write

1
q

d
dt

∫
BR

uq dµ ≤ −(q − 1)
(

p
p + q − 2

)p ∫
BR

∣∣∣∣∣∇ (
u

p+q−2
p

)∣∣∣∣∣p dµ +

∫
BR

uσ+q−1 dµ. (3.32)
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Now we take c1 > 0, c2 > 0 such that c1 + c2 = 1 so that∫
BR

∣∣∣∣∣∇ (
u

p+q−2
p

)∣∣∣∣∣p dµ = c1

∥∥∥∥∥∇ (
u

p+q−2
p

)∥∥∥∥∥p

Lp(BR)
+ c2

∥∥∥∥∥∇ (
u

p+q−2
p

)∥∥∥∥∥p

Lp(BR)
. (3.33)

Take α ∈ (0, 1). Thanks to (1.4), (3.33) we get∫
BR

∣∣∣∣∣∇ (
u

p+q−2
p

)∣∣∣∣∣2 dµ ≥ c1 Cp
p ‖u‖

p+q−2
Lp+q−2(BR) + c2

∥∥∥∥∥∇ (
u

p+q−2
p

)∥∥∥∥∥p

Lp(BR)

≥ c1Cp
p ‖u‖

p+q−2
Lp+q−2(BR) + c2

∥∥∥∥∥∇ (
u

p+q−2
p

)∥∥∥∥∥p+pα−pα

Lp(BR)

≥ c1Cp
p ‖u‖

p+q−2
Lp+q−2(BR) + c2Cpα

p ‖u‖
α(p+q−2)
Lp+q−2(BR)

∥∥∥∥∥∇ (
u

p+q−2
p

)∥∥∥∥∥p−pα

Lp(BR)

(3.34)

Moreover, using the interpolation inequality, Hölder inequality and (1.3), we have∫
BR

uσ+q−1 dµ, = ‖u‖σ+q−1
Lσ+q−1

≤ ‖u‖θ(σ+q−1)
Lp+q−2(BR) ‖u‖

(1−θ)(σ+q−1)
Lσ+p+q−2(BR)

≤ ‖u‖θ(σ+q−1)
Lp+q−2(BR)

[
‖u‖σ

Lσ
N
p (BR)
‖u‖p+q−2

L
(p+q−2) N

N−p (BR)

] (1−θ)(σ+q−1)
σ+p+q−2

≤ ‖u‖θ(σ+q−1)
Lp+q−2(BR)‖u‖

(1−θ)σ(σ+q−1)
σ+p+q−2

Lσ
N
p (BR)

(
1

Cs,p

∥∥∥∥∥∇ (
u

p+q−2
p

)∥∥∥∥∥
Lp(BR)

)p(1−θ) σ+q−1
σ+p+q−2

(3.35)

where θ := (p−1)(p+q−2)
σ(σ+q−1) . By plugging (3.34) and (3.35) into (3.32) we obtain

1
q

d
dt
‖u(t)‖qLq(BR) ≤ −(q − 1)

(
p

p + q − 2

)p

c1 Cp
p ‖u‖

p+q−2
Lp+q−2(BR)

− (q − 1)
(

p
p + q − 2

)p

c2 Cpα
p ‖u‖

α(p+q−2)
Lp+q−2(BR)

∥∥∥∥∥∇ (
u

p+q−2
p

)∥∥∥∥∥p−pα

Lp(BR)

+ C̃‖u‖θ(σ+q−1)
Lp+q−2(BR) ‖u‖

(1−θ)σ(σ+q−1)
σ+p+q−2

Lσ
N
p (BR)

‖∇

(
u

p+q−2
p

)
‖

p(1−θ) σ+q−1
σ+p+q−2

Lp(BR) ,

(3.36)

where

C̃ =

(
1

Cs,p

)p(1−θ) σ+q−1
σ+p+q−2

. (3.37)

Let us now fix α ∈ (0, 1) such that

p − pα = p(1 − θ)
σ+q − 1

σ+p + q − 2
.

Hence, we have

α =
p − 1
σ

. (3.38)
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By substituting (3.38) into (3.36) we obtain

1
q

d
dt
‖u(t)‖qLq(BR) ≤ −(q − 1)

(
p

p + q − 2

)p

c1 Cp
p ‖u‖

p+q−2
Lp+q−2(BR)

−
1
C̃

{
(q − 1)

(
p

p + q − 2

)p

C − ‖u‖
σ(σ+q−1)−(p−1)(p+q−2)

σ+p+q−2

Lσ
N
p (BR)

}
× ‖u‖α(p+q−2)

Lp+q−2(BR)

∥∥∥∥∥∇ (
u

p+q−2
p

)∥∥∥∥∥p−pα

Lp(BR)
,

(3.39)

where C has been defined in Remark 2.8. Observe that, due to hypotheses (3.30) and by the continuity
of the solution u(t), there exists t0 > 0 such that

‖u(t)‖
Lσ

N
p (BR)

≤ 2 ε̃1 for any t ∈ (0, t0] .

Hence, (3.39) becomes, for any t ∈ (0, t0]

1
q

d
dt
‖u(t)‖qLq(BR) ≤ −(q − 1)

(
p

p + q − 2

)p

c1Cp
p ‖u‖

p+q−2
Lp+q−2(BR)

−
1
C̃

{
(q − 1)

(
p

p + q − 2

)p

C − 2ε̃
σ(σ+q−1)−(p−1)(p+q−2)

σ+p+q−2

1

}
‖u‖α(p+q−2)

Lp+q−2(BR)

∥∥∥∥∥∇ (
u

p+q−2
p

)∥∥∥∥∥p−pα

Lp(BR)

≤ 0 ,

provided ε̃1 is small enough. Hence we have proved that ‖u(t)‖Lq(BR) is decreasing in time for any
t ∈ (0, t0], thus

‖u(t)‖Lq(BR) ≤ ‖u0‖Lq(BR) for any t ∈ (0, t0] . (3.40)

In particular, inequality (3.40) holds q = σ N
p . Hence we have

‖u(t)‖
Lσ

N
p (BR)

≤ ‖u0‖Lσ
N
p (BR)

< ε̃1 for any t ∈ (0, t0] .

Now, we can repeat the same argument in the time interval (t0, t1] with t1 = 2t0. This can be done due
to the uniform continuity of the map t 7→ u(t) in [0,T ]. Hence, we can write that

‖u(t)‖
Lσ

N
p (BR)

≤ 2 ε̃1 for any t ∈ (t0, t1] .

Thus we get
‖u(t)‖Lq(BR) ≤ ‖u0‖Lq(BR) for any t ∈ (0, t1] .

Iterating this procedure we obtain the thesis.
�

3.4. Lq0 − Lq estimate for σ > p − 1

Using a Moser type iteration procedure we prove the following result:
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Proposition 3.6. Assume (1.2) and, besides, that p > 2. Let M be such that (1.3) and (1.4) hold.
Suppose that u0 ∈ L∞(BR), u0 ≥ 0. Let u be the solution of problem (3.2) in the sense of Definition 3.1
such that in addition u ∈ C([0,T ], Lq(BR)) for any q ∈ (1,+∞), for any T > 0. Let 1 < q0 ≤ q < +∞

and assume that
‖u0‖Lσ

N
p
(BR) < ε̃1 (3.41)

for ε̃1 = ε̃1(σ, p,N,Cs,p,Cp, q, q0) sufficiently small. Then there exists C(p, q0,Cs,p, ε̃1,N, q) > 0 such
that

‖u(t)‖Lq(BR) ≤ C t−γq‖u0‖
δq

Lq0 (BR) for all t > 0 , (3.42)

where

γq =
q0

p − 2

(
1
q0
−

1
q

)
, δq =

q0

q
. (3.43)

Proof. Arguing as in the proof of Proposition 3.3, let {qm} be the sequence defined in (2.15). Let m be
the first index such that qm ≥ q. Observe that m̄ is well defined in view of the mentioned properties
of {qm}, see (2.15). We start by proving a smoothing estimate from q0 to qm using again a Moser
iteration technique. Afterwards, if qm ≡ q then the proof is complete. Otherwise, if qm > q then, by
interpolation, we get the thesis.
Let t > 0, we define

r =
t

2m − 1
, tm = (2m − 1)r . (3.44)

Observe that
t0 = 0, tm = t, {tm} is an increasing sequence w.r.t. m.

Now, for any 1 ≤ m ≤ m, we multiply Eq (3.2) by uqm−1−1 and integrate in BR × [tm−1, tm]. Thus we get∫ tm

tm−1

∫
BR

ut uqm−1−1 dµ dτ −
∫ tm

tm−1

∫
BR

div
(
|∇up−2|∇u

)
uqm−1−1 dµ dτ

=

∫ tm

tm−1

∫
BR

Tk(uσ) uqm−1−1 dµ dτ.

Then we integrate by parts in BR × [tm−1, tm], hence we get

1
qm−1

[
‖u(·, tm)‖qm−1

Lqm−1 (BR) − ‖u(·, tm−1)‖qm−1
Lqm−1 (BR)

]
≤ −(qm−1 − 1)

(
p

p + qm−1 − 2

)p ∫ tm

tm−1

∫
BR

∣∣∣∣∣∇ (
u

p+qm−1−2
p

)∣∣∣∣∣p dµ dτ

+

∫ tm

tm−1

∫
BR

uσ uqm−1−1 dµ dτ.

where we have made use of inequality
Tk(uσ) ≤ uσ.
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Now, by arguing as in the proof of Lemma 3.5, by using (3.33) and (3.34) with q = qm−1, we get∫
BR

∣∣∣∣∣∇ (
u

p+qm−1−2
p

)∣∣∣∣∣p dµ

≥ c1Cp
p ‖u‖

p+qm−1−2
Lp+qm−1−2(BR)

+ c2Cpα
p ‖u‖

α(p+qm−1−2)
Lp+qm−1−2(BR)

∥∥∥∥∥∇ (
u

p+qm−1−2
p

)∥∥∥∥∥p−pα

Lp(BR)

where α ∈ (0, 1) and c1 > 0, c2 > 0 with c1 + c2 = 1. Similarly, from (3.35) with q = qm−1 we can write∫
BR

uσuqm−1−1dµ = ‖u‖σ+qm−1−1
Lp+qm−1−1(BR)

≤ ‖u‖θ(σ+qm−1−1)
Lp+qm−1−2(BR)

‖u‖
(1−θ)σ(σ+qm−1−1)

σ+p+qm−1−2

Lσ
N
p (BR)

×

(
1

Cs,p

∥∥∥∥∇(u
p+qm−1−2

p )
∥∥∥∥

Lp(BR)

)p(1−θ) σ+qm−1−1
σ+p+qm−1−2

where θ := (p−1)(p+qm−1−2)
σ(σ+qm−1−1) . Now, due to assumption (3.30), the continuity of u, by choosing C̃ and α as

in (3.37) and (3.38) respectively, we can argue as in the proof of Lemma 3.5 (see (3.39)), hence we
obtain

1
qm−1

[
‖u(·, tm)‖qm−1

Lqm−1 (BR) − ‖u(·, tm−1)‖qm−1
Lqm−1 (BR)

]
≤ −(qm−1 − 1)

(
p

p + qm−1 − 2

)p

c1Cp
p

∫ tm

tm−1

‖u(·, τ)‖p+qm−1−2
Lp+qm−1−2(BR)

dτ

−
1
C̃

{
(qm−1 − 1)

(
p

p + qm−1 − 2

)p

C − 2ε̃1

σ(σ+qm−1−1)−(p−1)(p+qm−1−2)
σ+p+qm−1−2

}
×

∫ tm

tm−1

‖u(·, τ)‖α(p+qm−1−2)
Lp+qm−1−2(BR)

∥∥∥∥∥∇ (
u

p+qm−1−2
p

)
(·, τ)

∥∥∥∥∥p−pα

Lp(BR)
dτ,

(3.45)

where C has been defined in Remark 2.8. Finally, provided ε̃1 is small enough, (3.45) can be rewritten
as

1
qm−1

[
‖u(·, tm)‖qm−1

Lqm−1 (BR) − ‖u(·, tm−1)‖qm−1
Lqm−1 (BR)

]
≤ −(qm−1 − 1)

(
p

p + qm−1 − 2

)p

c1Cp
p

∫ tm

tm−1

‖u(·, τ)‖p+qm−1−2
Lp+qm−1−2(BR)

dτ.

We define qm as in (2.15), so that qm = p + qm−1 − 2. Then, in view of hypothesis (3.41), we can apply
Lemma 3.5 to the integral in the right-hand side of the latter, hence we get

1
qm−1

[
‖u(·, tm)‖qm−1

Lqm−1 (BR) − ‖u(·, tm−1)‖qm−1
Lqm−1 (BR)

]
≤ −(qm−1 − 1)

(
p

p + qm−1 − 2

)p

c1Cp
p ‖u(·, tm)‖qm

Lqm (BR) |tm − tm−1|.

(3.46)

Observe that
‖u(·, tm)‖qm−1

Lqm−1 (BR) ≥ 0,

|tm − tm−1| =
2m−1t

2m − 1
.

(3.47)
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We define

dm−1 :=
(

p
p + qm−1 − 2

)−p 1
c1 Cp

p

1
qm−1(qm−1 − 1)

. (3.48)

By plugging (3.47) and (3.48) into (3.46), we get

‖u(·, tm)‖qm

Lqm
ρ (BR)

≤
2m̄ − 1
2m−1t

dm−1‖u(·, tm−1)‖qm−1

Lqm−1
ρ (BR)

.

The latter can be rewritten as

‖u(·, tm)‖Lqm (BR) ≤

(
2m̄ − 1
2m−1 dm−1

) 1
qm

t−
1

qm ‖u(·, tm−1)‖
qm−1

qm
Lqm−1 (BR) (3.49)

Observe that, for any 1 ≤ m ≤ m̄, we have

2m̄ − 1
2m−1 dm−1 =

2m̄ − 1
2m−1

(
p

p + qm−1 − 2

)−p 1
c1 Cp

p

1
qm−1(qm−1 − 1)

≤ 2m̄+1 1
c1 Cp

p

(
p + qm−1 − 2

p

)p 1
qm−1(qm−1 − 1)

.

(3.50)

Consider the function

h(x) :=
(p + x − 2)p

x(x − 1)
, for q0 ≤ x ≤ qm, x ∈ R.

Observe that h(x) ≥ 0 for any q0 ≤ x ≤ qm. Moreover, h has a maximum in the interval q0 ≤ x ≤ qm,
call x̃ the point at which it is attained. Hence

h(x) ≤ h(x̃) for any q0 ≤ x ≤ qm, x ∈ R. (3.51)

Due to (3.50) and (3.51), we can say that there exists a positive constant C, where C = C(Cp, m̄, p, q0),
such that

2m − 1
2m−1 dm−1 ≤ C for all 1 ≤ m ≤ m. (3.52)

By using (3.52) and (3.49), we get, for any 1 ≤ m ≤ m

‖u(·, tm)‖Lqm (BR) ≤ C
1

qm t−
1

qm ‖u(·, tm−1)‖
qm−1

qm
Lqm−1 (BR). (3.53)

Let us set
Um := ‖u(·, tm)‖Lqm (BR)

Then (3.53) becomes

Um ≤ C
1

qm t−
1

qm U
qm−1

qm
n−1

≤ C
1

qm t−
1

qm

[
C

1
qm−1 t−

1
qm−1 U

qm−2
qm−1
m−2

]
≤ ...

≤ C
m

qm t−
m

qm U
q0
qm
0 .
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We define
αm :=

m
qm
, δm :=

q0

qm
. (3.54)

Substituting m with m̄ into (3.54) and in view of (3.44), (3.53) with m = m, we have

‖u(·, t)‖Lqm (BR) ≤ Cαmt−αm ‖u0‖
δm
Lq0 (BR) .

Observe that if qm = q then the thesis is proved and one has

αm =
1

p − 2

(
1 −

q0

q

)
, δm =

q0

q
.

Now suppose that q < qm, then in particular q0 ≤ q ≤ qm. By interpolation and Lemma 3.5 we get

‖u(·, t)‖Lq(BR) ≤ ‖u(·, t)‖θLq0 (BR) ‖u(·, t)‖1−θLqm (BR)

‖u(·, t)‖θLq0 (BR) Cαm(1−θ)t−αm(1−θ) ‖u0‖
δm(1−θ)
Lq0 (BR)

≤ Cαm(1−θ)t−αm(1−θ) ‖u0‖
δm(1−θ)+θ
Lq0 (BR) ,

(3.55)

where

θ =
q0

q

(
qm − q
qm − q0

)
. (3.56)

Combining (3.43), (3.55) and (3.56), we get the claim by noticing that q was arbitrary fixed in [q0,+∞).
�

4. Auxiliary results

In what follows, we will deal with solutions uR to problem (3.2) for arbitrary fixed R > 0. For
notational convenience, we will simply write u instead of uR since no confusion will occur in the
present section. We define

Gk(v) := v − Tk(v). (4.1)

where Tk(v) has been defined in (3.1). Let a1 > 0, a2 > 0 and t > τ1 > τ2 > 0. We consider, for any
i ∈ N ∪ {0}, the sequences

ki := a2 + (a1 − a2)2−i ;
θi := τ2 + (τ1 − τ2)2−i ;

(4.2)

and the cylinders
Ui := BR × (θi, t). (4.3)

Observe that the sequence {θi}i∈N is monotone decreasing w.r.t. i. Furthermore, we define, for any
i ∈ N, the cut-off functions ξi(τ) such that

ξi(τ) :=

1 θi−1 < τ < t

0 0 < τ < θi
and |(ξi)τ| ≤

2i

τ1 − τ2
. (4.4)

Finally, we define
S (t) := sup

0<τ<t

(
τ‖u(τ)‖σ−1

L∞(BR)

)
. (4.5)

We can now state the following
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Lemma 4.1. Let i ∈ N, ki, θi, Ui be defined in (4.2), (4.3) and R > 0. Let u be a solution to
problem (3.2). Then, for any q > 1, we have that

sup
τ1<τ<t

∫
BR

[Gk0(u)]q dµ +

"
Ui−1

∣∣∣∣∇[Gki(u)]
p+q−2

p

∣∣∣∣p dµdτ ≤ 2iγC1

"
Ui

[Gki+1(u)]q dµdτ.

where γ = γ(p, q) and

C1 :=
1

τ1 − τ2
+

S (t)
τ1

2a1

a1 − a2
. (4.6)

Proof. For any i ∈ N, we multiply both sides of the differential equation in problem (3.2) by
[Gki(u)]q−1ξi, q > 1, and we integrate on the cylinder Ui, yielding:"

Ui

uτ [Gki(u)]q−1ξi dµdτ

=

"
Ui

div(|∇u|p−2 ∇u)[Gki(u)]q−1ξi dµdτ +

"
Ui

Tk(uσ) [Gki(u)]q−1ξi dµdτ .
(4.7)

We integrate by parts. Thus we write, due to (4.4),"
Ui

uτ [Gki(u)]q−1ξi dµdτ =
1
q

"
Ui

d
dτ

[(Gki(u))q]ξi dµdτ

= −
1
q

"
Ui

[Gki(u)]q(ξi)τ dµdτ +
1
q

∫
BR

[Gki(u(x, t))]q dµ
(4.8)

Moreover,

−

"
Ui

div(|∇u|p−2 ∇u)[Gki(u)]q−1ξi dµdτ =

"
Ui

|∇u|p−2 ∇u · ∇[Gki(u)]q−1ξi dµdτ

≥ (q − 1)
"

Ui

[Gki(u)]q−2|∇[Gki(u)]|p ξi dµdτ.
(4.9)

Now, combining (4.7), (4.8) and (4.9), using the fact that T (uσ) ≤ uσ and (4.4), we can write

1
q

∫
BR

[Gki(u(x, t))]q dµ + (q − 1)
"

Ui

[Gki(u)]q−2|∇[Gki(u)]|p ξi dµdτ

≤
1
q

"
Ui

[Gki(u)]q(ξi)τ dµdτ +

"
Ui

uσ [Gki(u)]q−1ξi dµdτ

≤
2i

τ1 − τ2

"
Ui

[Gki(u)]q dµdτ +

"
Ui

uσ [Gki(u)]q−1ξi dµdτ.

(4.10)

Let us define

γ̃ :=
[
min

{
1
q
, q − 1

}]−1

,

thus (4.10) reads∫
BR

[Gki(u(x, t))]q dµ +

"
Ui

[Gki(u)]q−2|∇[Gki(u)]|pξi dµdτ

≤ γ̃
2i

τ1 − τ2

"
Ui

[Gki(u)]q dµdτ + γ̃

"
Ui

uσ [Gki(u)]q−1ξidµdτ.
(4.11)
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Observe that the sequence {ki}i∈N is monotone decreasing, hence

Gk0(u) ≤ Gki(u) ≤ Gki+1(u) ≤ u for all i ∈ N.

Thus (4.11) can be rewritten as∫
BR

[Gk0(u(x, t))]q dµ +

"
Ui−1

[Gki(u)]q−2|∇[Gki(u)]|p dµdτ

≤
2i γ̃

τ1 − τ2

"
Ui

[Gki+1(u)]q dµdτ + γ̃

"
Ui

uσ [Gki+1(u)]q−1dµdτ.
(4.12)

Let us now define
I := γ̃

"
Ui

uσ−1 u [Gki+1(u)]q−1dµdτ

Observe that, for any i ∈ N,
u
ki
χi ≤

u − ki+1

ki − ki+1
χi

where χi is the characteristic function of Di := {(x, t) ∈ Ui : u(x, t) ≥ ki}. Then, by using (4.5), we get:

I ≤ γ̃
∫ t

θi

1
τ
τ‖u(τ)‖σ−1

L∞(BR)

∫
BR

u
[
Gki+1(u)

]q−1 dµdτ

= γ̃

∫ t

θi

1
τ
τ‖u(τ)‖σ−1

L∞(BR)

∫
BR

ki
u
ki

[
Gki+1(u)

]q−1 dµdτ

≤ γ̃
ki

ki − ki+1
S (t)

∫ t

θi

1
τ

∫
BR

[
Gki+1(u)

]q dµdτ.

(4.13)

By substituting (4.13) into (4.12) we obtain

sup
τ1<τ<t

∫
BR

[Gk0(u(x, t))]q dµ +

(
p

p + q − 2

)p"
Ui−1

∣∣∣∣∇[Gki(u)]
p+q−2

p

∣∣∣∣p dµdτ

≤
2i γ̃

τ1 − τ2

"
Ui

[Gki+1(u)]q dµdτ +
ki γ̃

ki − ki+1

S (t)
θ0

"
Ui

[Gki+1(u)]qdµdτ.

To proceed further, observe that

ki

ki − ki+1
=

2i+1a2

a1 − a2
+ 2, and θ0 ≡ τ1.

Consequently, by choosing C1 as in (4.6), we get

sup
τ1<τ<t

∫
BR

[Gk0(u(x, t))]q dµ +

(
p

p + q − 2

)p"
Ui−1

|∇[Gki(u)]
p+q−2

p |p dµdτ

≤ 2i γ̃C1

∫ ∫
Ui

[Gki+1(u)]q dµdτ.

The thesis follows, letting

γ :=
[
min

{
1;

(
p

p + q − 2

)p}]−1

γ̃. (4.14)

�
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Lemma 4.2. Assume (1.2), let 1 < r < q and assume that (1.3) holds. Let ki, θi, Ui be defined in (4.2),
(4.3) and R > 0. Let u be a solution to problem (3.2). Then, for every i ∈ N and ε > 0, we have

sup
τ1<τ<t

∫
BR

[Gk0(u)]q dµ +

"
Ui−1

∣∣∣∣∇[Gki(u)]
p+q−2

p

∣∣∣∣p dµdτ

≤ ε

"
Ui

∣∣∣∣∇[Gki+1(u)]
p+q−2

p

∣∣∣∣p dµdτ

+ C(ε)(2iγC1)
N(p+q−2−r)+pr

N(p−2)+pr (t − τ2)
(

sup
τ2<τ<t

∫
BR

[Gk∞(u)]r dµ
) N(p−2)+pq

N(p−2)+pr

,

with C1 and γ defined as in (4.6) and (4.14) respectively and for some C(ε) > 0.

Proof. Let us fix q > 1 and 1 < r < q. We define

α := r
N(p − 2) + pq

N(p + q − 2 − r) + pr
. (4.15)

Observe that, since 1 < r < q, one has 0 < α < q. By Hölder inequality with exponents pN
N−p

(
p+q−2
p(q−α)

)
and N(p+q−2)

N(p+α−2)+p(q−α) , we thus have:∫
BR

[Gki+1(u)]q dµ =

∫
BR

[Gki+1(u)]q−α[Gki+1(u)]α dµ

≤

(∫
BR

[Gki+1(u)]
( p+q−2

p

) pN
N−p dµ

)( p(q−α)
p+q−2

) N−p
pN

×

(∫
BR

[Gki+1(u)]
αN(p+q−2)

N(p+α−2)+p(q−α) dµ
) N(p+α−2)+p(q−α)

N(p+q−2)

≤

(∥∥∥∥[Gki+1(u)]
p+q−2

p

∥∥∥∥
Lp∗ (BR)

) p(q−α)
p+q−2

×

(∫
BR

[Gki+1(u)]
αN(p+q−2)

N(p+α−2)+p(q−α) dµ
) N(p+α−2)+p(q−α)

N(p+q−2)

.

(4.16)

By the definition of α in (4.15) and inequality (1.3), (4.16) becomes∫
BR

[Gki+1(u)]q dµ ≤
(

1
Cs,p

∥∥∥∥∇[Gki+1(u)]
p+q−2

p

∥∥∥∥
Lp(BR)

) p(q−α)
p+q−2

(∫
BR

[Gki+1(u)]r dµ
) α

r

. (4.17)

We multiply both sides of (4.17) by 2iγC1 with C1 and γ as in (4.6) and (4.14), respectively. Then, we
apply Young’s inequality with exponents p+q−2

q−α and p+q−2
p+α−2 to get:

2i γC1

∫
BR

[Gki+1(u)]q dµ

≤ ε

∫
BR

∣∣∣∣∇[Gki+1(u)]
p+q−2

p

∣∣∣∣p dµ + C(ε)(2iγC1)
p+q−2
p+α−2

(∫
BR

[Gki+1(u)]r dµ
) α

r
p+q−2
p+α−2

(4.18)
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Define

λ :=
α

r

(
p + q − 2
p + α − 2

)
=

N(p − 2) + pq
N(p − 2) + pr

.

Observe that λ > 1 since r < q. By Lemma 4.1,

sup
τ1<τ<t

∫
BR

[Gk0(u)]q dµ +

"
Ui−1

∣∣∣∣∇[Gki(u)]
p+q−2

p

∣∣∣∣p dµdτ ≤ 2iγC1

∫ t

θi

∫
BR

[Gki+1(u)]q dµdτ (4.19)

Moreover, let us integrate inequality (4.18) in the time interval τ ∈ (θi, t). Then, we observe that

C(ε)(2iγC1)
p+q−2
p+α−2

∫ t

θi

(∫
BR

[Gki+1(u)]r dµ
)λ

dτ

≤ C(ε)(2iγC1)
p+q−2
p+α−2 (t − τ2)

(
sup
τ2<τ<t

∫
BR

[Gki+1(u)]r dµ
)λ (4.20)

where we have used that τ2 < θi for every i ∈ N. Finally, we substitute (4.19) and (4.20) into (4.18),
thus we get

sup
τ1<τ<t

∫
BR

[Gk0(u)]q dµ +

"
Ui−1

∣∣∣∣∇[Gki(u)]
p+q−2

p

∣∣∣∣p dµdτ

≤ ε

"
Ui

∣∣∣∣∇[Gki+1(u)]
p+q−2

p

∣∣∣∣p dµdτ + C(ε)(2iγC1)
p+q−2
p+α−2 (t − τ2)

(
sup
τ2<τ<t

∫
BR

[Gki+1(u)]r dµ
)λ

The thesis follows by noticing that, for any i ∈ N

Gki(u) ≤ Gki+1(u) ≤ . . . ≤ Gk∞(u),

and that
p + q − 2
p + α − 2

=
N(p + q − 2 − r) + pr

N(p − 2) + pr
.

�

Proposition 4.3. Assume that (1.2) and (1.3) holds. Let S (t) be defined as in (4.5). Let u be a solution
to problem (3.2). Suppose that, for all t ∈ (0,T ),

S (t) ≤ 1.

Let r ≥ 1, then there exists k = k(p, r) such that

‖u(x, τ)‖L∞(BR×( t
2 ,t)) ≤ k t−

N
N(p−2)+pr

 sup
t
4<τ<t

∫
BR

ur dµ


p

N(p−2)+pr

,

for all t ∈ (0,T ).
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Proof. Let us define, for any j ∈ N,

Ji :=
"

Ui

∣∣∣∣∇ [
Gki+1(u)

] p+q−2
p

∣∣∣∣p dµ dt, (4.21)

where Gk, {ki}i∈N and Ui have been defined in (4.1), (4.2) and (4.3) respectively. Let us fix 1 ≤ r < q
and define

β :=
N(p + q − 2 − r) + pr

N(p − 2) + pr
.

By means of Lemma 4.2 and (4.21), we can write, for any i ∈ N ∪ {0}

sup
τ1<τ<t

∫
BR

[Gk0(u)]q dµ + J0

≤ εJ1 + C(ε)(2γC1)β(t − τ2)
(

sup
τ2<τ<t

∫
BR

[Gk∞(u)]r dµ
) N(p−2)+pq

N(p−2)+pr

≤ ε

εJ2 + C(ε)(22γC1)β(t − τ2)
(

sup
τ2<τ<t

∫
BR

[Gk∞(u)]r dµ
) N(p−2)+pq

N(p−2)+pr


+ C(ε)(2γC1)β(t − τ2)

(
sup
τ2<τ<t

∫
BR

[Gk∞(u)]r dµ
) N(p−2)+pq

N(p−2)+pr

≤ . . .

≤ εiJi +

i−1∑
j=0

(2βε) j(2γC1)β C(ε)(t − τ2)
(

sup
τ2<τ<t

∫
BR

[Gk∞(u)]r dµ
) N(p−2)+pq

N(p−2)+pr

.

(4.22)

Fix now ε > 0 such that ε2β < 1
2 . Taking the limit as i −→ +∞ in (4.22) we have:

sup
τ1<τ<t

∫
BR

[Gk0(u)]q dµ ≤ C̃(2γC1)β(t − τ2)
(

sup
τ2<τ<t

∫
BR

[Gk∞(u)]r dµ
) N(p−2)+pq

N(p−2)+pr

. (4.23)

Observe that, due to the definition of the sequence {ki}i∈N in (4.2), one has

k0 = a1 , k∞ = a2 ;
Gk0(u) = Ga1(u) , Gk∞(u) = Ga2(u) .

For n ∈ N ∪ {0}, consider, for some C0 > 0 to be fixed later, the following sequences

tn =
1
2

t(1 − 2−n−1) ;

hn = C0(1 − 2−n−1) ;

hn =
1
2

(hn + hn+1) .

(4.24)

Let us now set in (4.23):
τ1 = tn+1 ; τ2 = tn ; a1 = hn ; a2 = hn . (4.25)
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Then the coefficient C1 defined in (4.6), by (4.24) and (4.25), satisfies, since for any t ∈ (0,T ) one has
S (t) ≤ 1,

2C1 ≤
Cn

2

t
for some C2 > 1.

Due to the latter bound and to (4.25), (4.23) reads

sup
tn+1<τ<t

∫
BR

[Ghn
(u)]q dµ ≤ C̃ γCnβ

2 t−β+1
(

sup
tn<τ<t

∫
BR

[Ghn(u)]r dµ
) N(p−2)+pq

N(p−2)+pr

. (4.26)

Furthermore, observe that∫
BR

[Ghn+1(u)]r dµ ≤ (hn+1 − hn)r−q
∫

BR

[
Ghn

(u)
]q

dµ. (4.27)

By combining together (4.26) and (4.27), we derive the following inequalities:

sup
tn+1<τ<t

∫
BR

[Ghn+1(u)]r dµ ≤ (hn+1 − hn)r−q sup
tn+1<τ<t

∫
BR

[
Ghn

(u)
]q

dµ

≤ C̃ γCnβ
2

(
hn+1 − hn

2

)r−q

t−β+1
(

sup
tn<τ<t

∫
BR

[Ghn(u)]r dµ
) N(p−2)+pq

N(p−2)+pr

.

(4.28)

Let us finally define

Yn := sup
tn<τ<t

∫
BR

[Ghn(u)]r dµ.

Hence, by using (4.24), (4.28) reads,

Yn+1 ≤ C̃ γCnβ
2

(
hn+1 − hn

2

)r−q

t−β+1 Y
N(p−2)+pq
N(p−2)+pr

n

≤ C̃ γCnβ
2 2(n+3)(q−r) Cr−q

0 t−β+1 Y
N(p−2)+pq
N(p−2)+pr

n

≤ kn(q−r) Cr−q
0 t−β+1 Y

N(p−2)+pq
N(p−2)+pr

n ,

for some k = k(p, r) > 1. From [25, Chapter 2, Lemma 5.6] it follows that

Yn −→ 0 as n→ +∞, (4.29)

provided

Cr−q
0 t−β+1 Y

N(p−2)+pq
N(p−2)+pr −1

0 ≤ kr−q. (4.30)

Now, (4.29), in turn, reads
‖u‖L∞(BR×( t

2 ,t)) ≤ C0.

Moreover, (4.30) is fulfilled since

C0 = k t
−β+1
q−r Y

( N(p−2)+pq
N(p−2)+pr −1

)(
1

q−r

)
0 ≤ k t−

N
N(p−2)+pr

 sup
t
4<τ<t

∫
BR

ur dµ


p

N(p−2)+pr

.

This concludes the proof. �
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5. Proof of Theorem 2.2

By Lemma 4.3, using the same arguments as in the proof of [27, Lemmata 4 and 5, and subsequent
remarks], we get the following result.

Lemma 5.1. Assume (1.2) and σ > p − 1 +
p
N . Suppose that (1.3) and (2.2) hold. Let S (t) be defined

as in (4.5). Define
T := sup {t > 0 : S (t) ≤ 1} . (5.1)

Then
T = +∞.

Proof of Theorem 2.2. Let {u0,h}h≥0 be a sequence of functions such that

(a) u0,h ∈ L∞(M) ∩C∞c (M) for all h ≥ 0,
(b) u0,h ≥ 0 for all h ≥ 0,
(c) u0,h1 ≤ u0,h2 for any h1 < h2,

(d) u0,h −→ u0 in Ls(M) ∩ L1(M) as h→ +∞ ,

Observe that, due to assumptions (c) and (d), u0,h satisfies (2.2). For any R > 0, k > 0, h > 0,
consider the problem 

ut = div
(
|∇u|p−2∇u

)
+ Tk(uσ) in BR × (0,+∞)

u = 0 in ∂BR × (0,∞)
u = u0,h in BR × {0} .

(5.2)

From standard results it follows that problem (5.2) has a solution uR
h,k in the sense of Definition 3.1. In

addition, uR
h,k ∈ C

(
[0,T ]; Lq(BR)

)
for any q > 1.

(i) In view of Proposition 4.3 and Lemma 5.1, the solution uR
h,k to problem (5.2) satisfies estimate (4.3)

for any t ∈ (0,+∞), uniformly w.r.t. R, k and h. By standard arguments we can pass to the limit as
R→ ∞, k → ∞ and h→ ∞ and we obtain a solution u to Eq (1.1) satisfying (2.3).
(ii) Due to Proposition 3.3, the solution uR

h,k to problem (5.2) satisfies estimate (3.11) for any t ∈
(0,+∞), uniformly w.r.t. R, k and h. Thus, the solution u fulfills (2.5).
(iii) We now furthermore suppose that u0,h ∈ Lq(M) and u0,h −→ u0 in Lq(M). Due to Proposition 3.2,
the solution uR

h,k to problem (5.2) satisfies estimate (3.4) for any t ∈ (0,+∞), uniformly w.r.t. R, k and
h. Thus, the solution u also fulfills (2.7).

This completes the proof.
�

6. Proof of Theorem 2.4

To prove Theorem 2.4 we need the following two results.

Lemma 6.1. Assume (1.2) and, moreover, that σ > p − 1 +
p
N . Assume that inequality (1.3) holds. Let

u be a solution of problem (3.2) with u0 ∈ L∞(BR), u0 ≥ 0, such that

‖u0‖Lσ0 (BR) ≤ ε2,
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for ε2 = ε2(σ, p,N,Cs,p, σ0) > 0 sufficiently small and σ0 as in (2.1). Let S (t) and T be defined as
in (4.5) and (5.1) respectively. Then

T = +∞.

Proof. We suppose by contradiction that T < +∞. Then, by (5.1) and (4.5), we can write:

1 = S (T ) = sup
0<t<T

t‖u(t)‖σ−1
L∞(BR). (6.1)

Due to Lemma 4.3 with the choice r = q > σ0, (6.1) reduces to

1 = S (T ) ≤ sup
0<t<T

t

k t−
N

N(p−2)+pq

 sup
t
4<τ<t

∫
BR

uq dµ


p

N(p−2)+pq


(σ−1)

≤ sup
0<t<T

k t1− N(σ−1)
N(p−2)+pq

 sup
t
4<τ<t
‖u(τ)‖

q p(σ−1)
N(p−2)+pq

Lq(BR)

 .
(6.2)

Define
I1 := sup

t
4<τ<t
‖u(τ)‖

pq(σ−1)
N(p−2)+pq

Lq(BR) . (6.3)

In view of the choice q > σ0, we can apply Proposition 3.3 with q0 = σ0 to (6.3), thus we get

I1 ≤ sup
t
4<τ<t

[
C t−γq ‖u0‖

δq

Lq0 (BR)

] pq(σ−1)
N(p−2)+pq

≤ C t−γq
pq(σ−1)

N(p−2)+pq ‖u0‖
δq

pq(σ−1)
N(p−2)+pq

Lq0 (BR) ,

(6.4)

where γq and δq are defined in (3.12). By substituting (6.4) into (6.2) we get

1 = S (T ) ≤ C k sup
0<t<T

t1− N(σ−1)
N(p−2)+pq−γq

pq(σ−1)
N(p−2)+pq ‖u0‖

δq
pq(σ−1)

N(p−2)+pq

Lq0 (BR) .

Observe that
1 −

N(σ−1)
N(p − 2) + pq

− γq
pq(σ−1)

N(p − 2) + pq
= 0;

δq
pq(σ−1)

N(p − 2) + pq
= σ−p + 1 > 0 ;

hence
1 = S (T ) < C C̃ ε

σ−p+1
2 .

Provided ε2 is sufficiently small, a contradiction, i.e., 1 = S (T ) < 1. Thus T = +∞. �

Proposition 6.2. Assume (1.2) and, moreover, that σ > p−1+
p
N . Let u be the solution to problem (3.2)

with u0 ∈ L∞(BR), u0 ≥ 0. Let σ0 be defined in (2.1) and q > σ0 . Assume that

‖u0‖Lσ0 (BR) < ε2

with ε2 = ε2(σ, p,N,Cs,p, σ0) > 0 sufficiently small. Then, for some C = C(N, σ, p, q, σ0) > 0:

‖u(t)‖L∞(BR) ≤ C t−
1

σ−1 ‖u0‖
1− p−2

σ−1
Lσ0 (BR) for any t ∈ (0,+∞). (6.5)
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Proof. Due to Lemma 6.1,
S (t) ≤ 1 for all t ∈ (0,+∞).

Therefore, by Lemma 4.3 and Proposition 3.3 with q0 = σ0, for all t ∈ (0,+∞)

‖u(t)‖L∞(BR) ≤ ‖u‖L∞(BR×( t
2 ,t))

≤ k t−
N

N(p−2)+pq

 sup
t
4<τ<t
‖u(τ)‖qLq(BR)


p

N(p−2)+pq

≤ C t−
N

N(p−2)+pq−γq
pq

N(p−2)+pq ‖u0‖
δq

pq
N(p−2)+pq

Lσ0 (BR) ,

(6.6)

where C = C(σ, p,N, q, σ0) > 0, γq and δq as in (3.12) with q0 = σ0. Observe that

−
N

N(p − 2) + pq
− γq

pq
N(p − 2) + pq

= −
1

σ−1
, (6.7)

and
δq

pq
N(p − 2) + pq

=
σ−p + 1
σ−1

. (6.8)

By combining (6.6) with (6.7) and (6.8) we get the thesis. �

Proof of Theorem 2.4. We use the same argument discussed in the proof of Theorem 2.2. In fact, let
{u0,l}l≥0 be a sequence of functions such that

(a) u0,l ∈ L∞(M) ∩C∞c (M) for all l ≥ 0,
(b) u0,l ≥ 0 for all l ≥ 0,
(c) u0,l1 ≤ u0,l2 for any l1 < l2,

(d) u0,l −→ u0 in Lσ0(M) as l→ +∞ ,

where σ0 has been defined in (2.1). Observe that, due to assumptions (c) and (d), u0,l satisfies (2.10).
For any R > 0, k > 0, l > 0, we consider problem (5.2) with the sequence u0,h replaced by the sequence
u0,l. From standard results it follows that problem (5.2) has a solution uR

l,k in the sense of Definition 3.1;
moreover, uR

l,k ∈ C
(
[0,T ]; Lq(BR)

)
for any q > 1.

Due to Proposition 6.2, Proposition 3.3 and Lemma 3.2, the solution uR
l,k to problem (5.2) satisfies

estimates (6.5), (3.11) and (3.4) for t ∈ (0,+∞), uniformly w.r.t. R, k and l. Thus, by standard
arguments we can pass to the limit as R → ∞, k → ∞ and l → ∞ and we obtain a solution u to
Eq (1.1) satisfying (2.11), (2.5) and (2.7). �

7. Proof of Theorem 2.7

Lemma 7.1. Assume (1.2), p > 2, and q > max {σ0, 1}. Let u be a solution to problem (3.2) with
u0 ∈ L∞(BR), u0 ≥ 0, such that

‖u0‖Lq(BR) ≤ δ1, (7.1)

for δ1 > 0 sufficiently small. Let S (t) be as in (4.5), then

T := sup{t > 0 : S (t) ≤ 1} > 1. (7.2)
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Proof. By (4.5) and (7.2) one has

1 = S (T ) = sup
0<t<T

t‖u(t)‖σ−1
L∞(BR). (7.3)

By Lemma (4.3) applied with r = q > max
{

N
p (σ−p + 1), 1

}
, (7.3) gives

1 = S (T ) ≤ sup
0<t<T

t

k t−
N

N(p−2)+pq

 sup
t
4<τ<t

∫
BR

uq dµ


p

N(p−2)+pq


(σ−1)

≤ sup
0<t<T

k t1− N(σ−1)
N(p−2)+pq

 sup
t
4<τ<t
‖u(τ)‖

q p(σ−1)
N(p−2)+pq

Lq(BR)

 .
(7.4)

By applying Proposition 3.6 to (7.4) and due to (7.1), we get

1 = S (T ) ≤ sup
0<t<T

k t1− N(σ−1)
N(p−2)+pq ‖u0‖

q p(σ−1)
N(p−2)+pq

Lq(BR)

≤ k T 1− N(σ−1)
N(p−2)+pq δ

q p(σ−1)
N(p−2)+pq

1 .

The thesis follows for δ1 > 0 small enough.
�

Lemma 7.2. Assume (1.2), p > 2 and s > max {σ0, 1} . Let u be a solution to problem (3.2) with
u0 ∈ L∞(BR), u0 ≥ 0, such that

‖u0‖Ls(BR) ≤ δ1, ‖u0‖Lσ
N
p (BR)

≤ δ1, (7.5)

for δ1 > 0 sufficiently small. Let S (t) be as in (4.5), then

T := sup{t ≥ 0 : S (t) ≤ 1} = +∞. (7.6)

Proof. We suppose by contradiction that
T < +∞.

Then, by (7.6), the definition of S (t) in (4.5) and by Lemma 7.1 we can write,

1 = S (T ) = sup
0<t<T

t‖u(t)‖σ−1
L∞(BR)

≤ sup
0<t<1

t‖u(t)‖σ−1
L∞(BR) + sup

1<t<T
t‖u(t)‖σ−1

L∞(BR)

=: J1 + J2 .

(7.7)

Now, by Lemma 4.3, applied with r = s, and Lemma 3.5 with q = s, we can write

J1 ≤ sup
0<t<1

t

k t−
N

N(p−2)+ps

 sup
t
4<τ<t

∫
BR

us dµ


p

N(p−2)+ps


(σ−1)

≤ sup
0<t<1

k t1− N(σ−1)
N(p−2)+ps ‖u0‖

ps(σ−1)
N(p−2)+ps

Ls(BR) .

(7.8)
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On the other hand, for any q > s, by Lemma 4.3, applied with r = q, and Proposition 3.6 with q0 = s,
we get

J2 ≤ sup
1<t<T

t

k t−
N

N(p−2)+pq

 sup
t
4<τ<t

∫
BR

uq dµ


p

N(p−2)+pq


(σ−1)

≤ sup
1<t<T

k t1− N(σ−1)
N(p−2)+pq sup

t
4<τ<t
‖u(τ)‖

pq(σ−1)
N(p−2)+pq

Lq(BR)

≤ sup
1<t<T

k t1− N(σ−1)
N(p−2)+pq sup

t
4<τ<t

(
Ct−

s
p−2

(
1
s−

1
q

)
‖u0‖

s
q

Ls(BR)

) pq(σ−1)
N(p−2)+pq

≤ sup
1<t<T

C k
4

t1− N(σ−1)
N(p−2)+pq−

spq(σ−1)
(p−2)[N(p−2)+pq]

(
1
s−

1
q

)
‖u0‖

ps(σ−1)
N(p−2)+pq

Ls(BR) .

(7.9)

By substituting (7.8) and (7.9) into (7.7) we get

1 = S (T ) ≤ sup
0<t<1

k ta ‖u0‖
ps(σ−1)

N(p−2)+ps

Ls(BR) + sup
1<t<T

C k
4

tb ‖u0‖
ps(σ−1)

N(p−2)+pq

Ls(BR) , (7.10)

where we have set

a = 1 −
N(σ−1)

N(p − 2) + ps
, and b = 1 −

N(σ−1)
N(p − 2) + pq

−
spq(σ−1)

(p − 2)[N(p − 2) + pq]

(
1
s
−

1
q

)
.

Now, observe that, since s > max
{

N
p (σ−p + 1), 1

}
and q > s,

a > 0; and b < 0 .

Hence, (7.10), due to assumption (7.5), reads

1 = S (T ) < k δ
ps(σ−1)

N(p−2)+ps

1 +
C k
4
δ

ps(σ−1)
N(p−2)+pq

1 .

Provided that δ1 is sufficiently small, thus yielding 1 = S (T ) < 1, a contradiction. Thus T = +∞. �

Proposition 7.3. Assume (1.2), p > 2 and s > max {σ0, 1}. Let u be a solution to problem (3.2) with
u0 ∈ L∞(BR), u0 ≥ 0, such that

‖u0‖Ls(BR) ≤ ε1, ‖u0‖Lσ
N
p (BR)

≤ ε1,

with ε1 = ε1(σ, p,N,Cs,p,Cp, s) sufficiently small. Then, for any t ∈ (0,+∞), for some
Γ = Γ(σ, p,N, q, s,Cs,p,Cp) > 0

‖u(t)‖L∞(BR) ≤ Γ t−
1

p−2

(
1− ps

N(p−2)+pq

)
‖u0‖

ps
N(p−2)+pq

Ls(BR) . (7.11)

Proof. Due to Lemma 7.2,
S (t) ≤ 1 for all t ∈ (0,+∞].
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Therefore, by Lemma 4.3 and Proposition 3.6 applied with q0 = s, for any q > s, we get, for all
t ∈ (0,+∞)

‖u(t)‖L∞(BR) ≤ ‖u‖L∞(BR×( t
2 ,t))

≤ k t−
N

N(p−2)+pq

 sup
t
4<τ<t
‖u(τ)‖qLq(BR)


p

N(p−2)+pq

≤ Γ t−
N

N(p−2)+pq−
s

p−2

(
1
s−

1
q

) pq
N(p−2)+pq ‖u0‖

s
q

pq
N(p−2)+pq

Ls(BR) .

Observing that

−
N

N(p − 2) + pq
−

s
p − 2

(
1
s
−

1
q

)
pq

N(p − 2) + pq
= −

1
p − 2

(
1 −

ps
N(p − 2) + pq

)
,

we get the thesis. �

Proof of Theorem 2.7. We proceed as in the proof of the previous Theorems. Let {u0,h}h≥0 be a sequence
of functions such that

(a) u0,h ∈ L∞(M) ∩C∞c (M) for all h ≥ 0,
(b) u0,h ≥ 0 for all h ≥ 0,
(c) u0,h1 ≤ u0,h2 for any h1 < h2,

(d) u0,h −→ u0 in Ls(M) as h→ +∞ .

(7.12)

From standard results it follows that problem (5.2) has a solution uR
h,k in the sense of Definition 3.1

with u0,h as in (7.12); moreover, uR
h,k ∈ C

(
[0,∞); Lq(BR)

)
for any q > 1. Due to Proposition 7.3, 3.6 and

Lemmata 3.5 and 7.2, the solution uR
h,k to problem (5.2) satisfies estimates (3.31), (3.42) and (7.11) for

any t ∈ (0,+∞), uniformly w.r.t. R, k and h. Thus, by standard arguments, we can pass to the limit as
R → +∞, k → +∞ and h → +∞ and we obtain a solution u to problem (1.1), which fulfills (2.12),
(2.13) and (2.14).

�

8. Porous medium equation with reaction

We now consider the following nonlinear reaction-diffusion problem: ut = ∆um + uσ in M × (0,T )
u = u0 in M × {0} ,

(8.1)

where M is an N−dimensional complete noncompact Riemannian manifold of infinite volume, ∆ being
the Laplace-Beltrami operator on M and T ∈ (0,∞]. We shall assume throughout this section that

N ≥ 3, m > 1, σ > m,

so that we are concerned with the case of degenerate diffusions of porous medium type (see [37]), and
that the initial datum u0 is nonnegative. Let Lq(M) be the space of those measurable functions f such
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that | f |q is integrable w.r.t. the Riemannian measure µ. We shall always assume that M supports the
Sobolev inequality, namely that:

(Sobolev inequality) ‖v‖L2∗ (M) ≤
1

Cs
‖∇v‖L2(M) for any v ∈ C∞c (M), (8.2)

where Cs is a positive constant and 2∗ := 2N
N−2 . In one of our main results, we shall also suppose that M

supports the Poincaré inequality, namely that:

(Poincaré inequality) ‖v‖L2(M) ≤
1

Cp
‖∇v‖L2(M) for any v ∈ C∞c (M), (8.3)

for some Cp > 0.
Solutions to (8.1) will be meant in the very weak, or distributional, sense, according to the following

definition.

Definition 8.1. Let M be a complete noncompact Riemannian manifold of infinite volume, of dimension
N ≥ 3. Let m > 1, σ > m and u0 ∈ L1

loc(M), u0 ≥ 0. We say that the function u is a solution to
problem (8.1) in the time interval [0,T ) if

u ∈ Lσloc(M × (0,T ))

and for any ϕ ∈ C∞c (M × [0,T ]) such that ϕ(x,T ) = 0 for any x ∈ M, u satisfies the equality:

−

∫ T

0

∫
M

uϕt dµ dt =

∫ T

0

∫
M

um ∆ϕ dµ dt +

∫ T

0

∫
M

uσ ϕ dµ dt

+

∫
M

u0(x)ϕ(x, 0) dµ.

First we consider the case that σ > m + 2
N and the Sobolev inequality holds on M. In order to state

our results we define
σ1 := (σ−m)

N
2
. (8.4)

Observe that σ1 > 1 whenever σ > m + 2
N . We comment that the next results improve and in part

correct some of the results of [17]. The proofs are omitted since they are identical to the previous ones.

Theorem 8.2. Let M be a complete, noncompact, Riemannian manifold of infinite volume and of
dimension N ≥ 3, such that the Sobolev inequality (8.2) holds. Let m > 1, σ > m + 2

N , s > σ1 and
u0 ∈ Ls(M) ∩ L1(M), u0 ≥ 0.

(i) Assume that
‖u0‖Ls(M) < ε0, ‖u0‖L1(M) < ε0 ,

with ε0 = ε0(σ,m,N,Cs) > 0 sufficiently small. Then problem (8.1) admits a solution for any
T > 0, in the sense of Definition 8.1. Moreover, for any τ > 0, one has u ∈ L∞(M × (τ,+∞)) and
there exists a constant Γ > 0 such that, one has

‖u(t)‖L∞(M) ≤ Γ t−α ‖u0‖
2

N(m−1)+2

L1(M) for all t > 0,

where
α :=

N
N(m − 1) + 2

.
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(ii) Let σ1 ≤ q < ∞ and
‖u0‖Lσ1 (M) < ε̂0

for ε̂0 = ε̂0(σ,m,N,Cs, q) > 0 small enough. Then there exists a constant
C = C(m, σ,N, ε0,Cs, q) > 0 such that

‖u(t)‖Lq(M) ≤ C t−γq‖u0‖
δq

Lσ1 (M) for all t > 0 ,

where

γq =
1

σ−1

[
1 −

N(σ−m)
2q

]
, δq =

σ−m
σ−1

[
1 +

N(m − 1)
2q

]
.

(iii) Finally, for any 1 < q < ∞, if u0 ∈ Lq(M) ∩ Lσ1(M) and

‖u0‖Lσ1 (M) < ε

with ε = ε(σ,m,N, r,Cs, q) > 0 sufficiently small, then

‖u(t)‖Lq(M) ≤ ‖u0‖Lq(M) for all t > 0 .

Theorem 8.3. Let M be a complete, noncompact manifold of infinite volume and of dimension N ≥ 3,
such that the Sobolev inequality (8.2) holds. Let m > 1, σ > m + 2

N and u0 ∈ Lσ1(M), u0 ≥ 0 where σ1

has been defined in (8.4). Assume that
‖u0‖Lσ1 (M) < ε0

with ε0 = ε0(σ,m,N, r,Cs) > 0 sufficiently small. Then problem (8.1) admits a solution for any T > 0,
in the sense of Definition 8.1. Moreover, for any τ > 0, one has u ∈ L∞(M × (τ,+∞)) and there exists
a constant Γ > 0 such that, one has

‖u(t)‖L∞(M) ≤ Γ t−
1

σ−1 ‖u0‖
σ−m
σ−1
Lσ1 (M) for all t > 0.

Moreover, the statements in (ii) and (iii) of Theorem 8.2 hold.

In the next theorem, we address the case that σ > m, supposing that both the inequalities (8.2)
and (8.3) hold on M.

Theorem 8.4. Let M be a complete, noncompact manifold of infinite volume and of dimension N ≥ 3,
such that the Sobolev inequality (8.2) and the Poincaré inequality (8.3) hold. Let

m > 1, σ > m,

and u0 ∈ Ls(M) ∩ Lσ
N
2 (M) where s > max {1, σ1}, u0 ≥ 0. Assume that

‖u0‖Ls(M) < ε1, ‖u0‖Lσ
N
2 (M)

< ε1,

holds with ε1 = ε1(m, σ,N, r,Cp,Cs) > 0 sufficiently small. Then problem (8.1) admits a solution
for any T > 0, in the sense of Definition 8.1. Moreover for any τ > 0 and for any q > s one has
u ∈ L∞(M × (τ,+∞)) and for all t > 0 one has

‖u(t)‖L∞(BR) ≤ Γ t−βq,s ‖u0‖
2s

N(m−1)+2q

Ls(BR) ,
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where

βq,s :=
1

m − 1

(
1 −

2s
N(m − 1) + 2q

)
> 0 .

Moreover, let s ≤ q < ∞ and
‖u0‖Ls(M) < ε̂1,

for some ε̂1 = ε̂1(σ,m,N, r,Cp,Cs, q, s) > 0 sufficiently small. Then there exists a constant C =

C(σ,m,N, ε1,Cs,Cp, q, s) > 0 such that

‖u(t)‖Lq(M) ≤ Ct−γq‖u0‖
δq

Ls(M) for all t > 0 ,

where

γq :=
s

m − 1

[
1
s
−

1
q

]
, δq :=

s
q
.

Finally, for any 1 < q < ∞, if u0 ∈ Lq(M) ∩ Ls(M) ∩ Lσ
N
2 (M) and

‖u0‖Ls(M) < ε,

for some ε = ε(σ,m,N,Cp,Cs, q) > 0 sufficiently small, then

‖u(t)‖Lq(M) ≤ ‖u0‖Lq(M) for all t > 0 .
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