The Software Defined Architectures (SODA) Synthesizer is an open-source compiler-based tool able to automatically generate domain-specialized systems targeting Application-Specific Integrated Circuits (ASICs) or Field Programmable Gate Arrays (FPGAs) starting from high-level programming. SODA is composed of a frontend, SODA-OPT, which leverages the multilevel intermediate representation (MLIR) framework to interface with productive programming tools (e.g., machine learning frameworks), identify kernels suitable for acceleration, and perform high-level optimizations, and of a state-of-the-art high-level synthesis backend, Bambu from the PandA framework, to generate custom accelerators. One specific application of the SODA Synthesizer is the generation of accelerators to enable ultra-low latency inference and control on autonomous systems for scientific discovery (e.g., electron microscopes, sensors in particle accelerators, etc.). This paper provides an overview of the flow in the context of the generation of accelerators for edge processing to be integrated in transmission electron microscopy (TEM) devices, focusing on use cases from precision material synthesis. We show the tool in action with an example of design space exploration for inference on reconfigurable devices with a conventional deep neural network model (LeNet). Finally, we discuss the research directions and opportunities enabled by SODA in the area of autonomous control for scientific experimental workflows.

Towards On-Chip Learning for Low Latency Reasoning with End-to-End Synthesis

Curzel, Serena;Fiorito, Michele;Ferrandi, Fabrizio
2023-01-01

Abstract

The Software Defined Architectures (SODA) Synthesizer is an open-source compiler-based tool able to automatically generate domain-specialized systems targeting Application-Specific Integrated Circuits (ASICs) or Field Programmable Gate Arrays (FPGAs) starting from high-level programming. SODA is composed of a frontend, SODA-OPT, which leverages the multilevel intermediate representation (MLIR) framework to interface with productive programming tools (e.g., machine learning frameworks), identify kernels suitable for acceleration, and perform high-level optimizations, and of a state-of-the-art high-level synthesis backend, Bambu from the PandA framework, to generate custom accelerators. One specific application of the SODA Synthesizer is the generation of accelerators to enable ultra-low latency inference and control on autonomous systems for scientific discovery (e.g., electron microscopes, sensors in particle accelerators, etc.). This paper provides an overview of the flow in the context of the generation of accelerators for edge processing to be integrated in transmission electron microscopy (TEM) devices, focusing on use cases from precision material synthesis. We show the tool in action with an example of design space exploration for inference on reconfigurable devices with a conventional deep neural network model (LeNet). Finally, we discuss the research directions and opportunities enabled by SODA in the area of autonomous control for scientific experimental workflows.
2023
ASPDAC '23: Proceedings of the 28th Asia and South Pacific Design Automation Conference
9781450397834
File in questo prodotto:
File Dimensione Formato  
ASPDAC23.pdf

accesso aperto

: Publisher’s version
Dimensione 370.41 kB
Formato Adobe PDF
370.41 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1229391
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact