Rail vehicle lightweighting using fibre reinforced polymer composite materials is essential for the future of rail. This is recognised as a means of reducing carbon dioxide production through lower energy consumption, as well as reducing the impact on track degradation, thus delivering improved rail capacity and performance. This paper presents an overview of the work conducted within work package 3 of the NEXTGEAR project focused on the ‘wheelset of the future’. Three concepts for a hybrid metallic-composite railway axle are proposed and their strengths and weaknesses are assessed. A finite element analysis on the selected concept was conducted, including a solution for the bonded joints of the metallic collars which provide the interface to the wheels and bearings. An axle mass reduction of over 63% was shown.

The design and development of a lightweight composite railway axle

S. BRUNI;A. BERNASCONI;M. CARBONI;
2022-01-01

Abstract

Rail vehicle lightweighting using fibre reinforced polymer composite materials is essential for the future of rail. This is recognised as a means of reducing carbon dioxide production through lower energy consumption, as well as reducing the impact on track degradation, thus delivering improved rail capacity and performance. This paper presents an overview of the work conducted within work package 3 of the NEXTGEAR project focused on the ‘wheelset of the future’. Three concepts for a hybrid metallic-composite railway axle are proposed and their strengths and weaknesses are assessed. A finite element analysis on the selected concept was conducted, including a solution for the bonded joints of the metallic collars which provide the interface to the wheels and bearings. An axle mass reduction of over 63% was shown.
2022
Proceedings of The World Congress on Railway Research (WCRR) 2022
Railway axle
lightweighting
unsprung mass
composite material
NEXTGEAR
File in questo prodotto:
File Dimensione Formato  
WCRRPaper.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 860.62 kB
Formato Adobe PDF
860.62 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1229250
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact