Integrated photonic circuits promise to be foundational for applications in quantum information and sensing technologies, through their ability to confine and manipulate light. A key role in such technologies may be played by spin-active quantum emitters, which can be used to store quantum information or as sensitive probes of the local environment. A leading candidate is the negatively charged nitrogen vacancy (NV-) diamond color center, whose ground spin state can be optically read out, exhibiting long (similar to 1 ms) coherence times at room temperature. These properties have driven research toward the integration of photonic circuits in the bulk of diamond with the development of techniques allowing fabrication of optical waveguides. In particular, femtosecond laser writing has emerged as a powerful technique, capable of writing light guiding structures with 3D configurations as well as creating NV complexes. In this Perspective, the physical mechanisms behind laser fabrication in diamond will be reviewed. The properties of waveguides, single- and ensemble-NV centers, will be analyzed, together with the possibility to combine such structures in integrated photonic devices, which can find direct application in quantum information and sensing. (C) 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Quantum technologies in diamond enabled by laser processing

Coccia, G;Sotillo, B;Olivero, P;Ramponi, R;Pietralunga, SM;Bollani, M;
2022-01-01

Abstract

Integrated photonic circuits promise to be foundational for applications in quantum information and sensing technologies, through their ability to confine and manipulate light. A key role in such technologies may be played by spin-active quantum emitters, which can be used to store quantum information or as sensitive probes of the local environment. A leading candidate is the negatively charged nitrogen vacancy (NV-) diamond color center, whose ground spin state can be optically read out, exhibiting long (similar to 1 ms) coherence times at room temperature. These properties have driven research toward the integration of photonic circuits in the bulk of diamond with the development of techniques allowing fabrication of optical waveguides. In particular, femtosecond laser writing has emerged as a powerful technique, capable of writing light guiding structures with 3D configurations as well as creating NV complexes. In this Perspective, the physical mechanisms behind laser fabrication in diamond will be reviewed. The properties of waveguides, single- and ensemble-NV centers, will be analyzed, together with the possibility to combine such structures in integrated photonic devices, which can find direct application in quantum information and sensing. (C) 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
2022
integrated photonic circuits
quantum information
quantum sensing
diamond platform
File in questo prodotto:
File Dimensione Formato  
5.0080348.pdf

accesso aperto

Descrizione: Quantum technologies in diamond enabled by laser processing
: Publisher’s version
Dimensione 2.62 MB
Formato Adobe PDF
2.62 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1228944
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact