This paper aims at estimating the longitudinal jerk of the vehicle as it is acted by a human driver, in the context of preventive safety. A reliable estimate is needed to infer the current driver intention in an advanced driving assistance system developed by the authors. The derived intention-oriented model for the longitudinal dynamics is embedded into an enhanced Kalman filter that provides the user with a knob to trade off between responsiveness of the estimate and noise rejection. The scheme is fit for on-line usage, relies on signals commonly available on the CAN bus of modern vehicles, and requires a very limited number of parameters. Its effectiveness is validated on experimental data and compared with alternative approaches.
Longitudinal jerk estimation of driver intentions for advanced driver assistance systems
Bisoffi, Andrea;Biral, Francesco;Zaccarian, Luca
2017-01-01
Abstract
This paper aims at estimating the longitudinal jerk of the vehicle as it is acted by a human driver, in the context of preventive safety. A reliable estimate is needed to infer the current driver intention in an advanced driving assistance system developed by the authors. The derived intention-oriented model for the longitudinal dynamics is embedded into an enhanced Kalman filter that provides the user with a knob to trade off between responsiveness of the estimate and noise rejection. The scheme is fit for on-line usage, relies on signals commonly available on the CAN bus of modern vehicles, and requires a very limited number of parameters. Its effectiveness is validated on experimental data and compared with alternative approaches.File | Dimensione | Formato | |
---|---|---|---|
J2017_[Bisoffi] Longitudinal Jerk Estimation of Driver Intentions for Advanced Driver Assistance Systems.pdf
Accesso riservato
:
Publisher’s version
Dimensione
3.02 MB
Formato
Adobe PDF
|
3.02 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.