We overview a recent research activity where suitable reset actions induce stability and performance of PID-controlled positioning systems suffering from nonlinear frictional effects. With a Coulomb-only effect, PID feedback produces a set of equilibria whose asymptotic (but not exponential) stability can be certified by using a discontinuous Lyapunov-like function. With velocity weakening effects (the so-called Stribeck friction), the set of equilibria becomes unstable with PID feedback and the so-called “hunting phenomenon” (persistent oscillations) is experienced. Resetting laws can be used in both scenarios. With Coulomb friction only, the discontinuous Lyapunov-like function immediately suggests a reset action providing extreme performance improvement, preserving stability and inducing desirable exponential convergence of a relevant subset of the solutions. With Stribeck, a more sophisticated set of logic-based reset rules recovers global asymptotic stability of the set of equilibria, providing an effective solution to the hunting instability. We clarify here the main steps of the Lyapunov-based proofs associated with our reset-enhanced PID controllers. These proofs involve building semiglobal hybrid representations of the solutions in the form of hybrid automata whose logical variables enable transforming the aforementioned discontinuous function into smooth or at least Lipschitz ones. Our theoretical results are illustrated by extensive simulations and experimental validation on an industrial nano-positioning system.

To stick or to slip: A reset PID control perspective on positioning systems with friction

Bisoffi, A.;Heemels, W. P. M. H.;Zaccarian, L.
2020-01-01

Abstract

We overview a recent research activity where suitable reset actions induce stability and performance of PID-controlled positioning systems suffering from nonlinear frictional effects. With a Coulomb-only effect, PID feedback produces a set of equilibria whose asymptotic (but not exponential) stability can be certified by using a discontinuous Lyapunov-like function. With velocity weakening effects (the so-called Stribeck friction), the set of equilibria becomes unstable with PID feedback and the so-called “hunting phenomenon” (persistent oscillations) is experienced. Resetting laws can be used in both scenarios. With Coulomb friction only, the discontinuous Lyapunov-like function immediately suggests a reset action providing extreme performance improvement, preserving stability and inducing desirable exponential convergence of a relevant subset of the solutions. With Stribeck, a more sophisticated set of logic-based reset rules recovers global asymptotic stability of the set of equilibria, providing an effective solution to the hunting instability. We clarify here the main steps of the Lyapunov-based proofs associated with our reset-enhanced PID controllers. These proofs involve building semiglobal hybrid representations of the solutions in the form of hybrid automata whose logical variables enable transforming the aforementioned discontinuous function into smooth or at least Lipschitz ones. Our theoretical results are illustrated by extensive simulations and experimental validation on an industrial nano-positioning system.
2020
Stick and slip, Coulomb friction, Stribeck friction, Positioning system, Reset control, Hybrid automata, Mechatronic application, Lyapunov results
File in questo prodotto:
File Dimensione Formato  
J2020_[Bisoffi] To stick or to slip A reset PID control perspective on positioning systems with friction.pdf

Accesso riservato

: Publisher’s version
Dimensione 14.19 MB
Formato Adobe PDF
14.19 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1226440
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 16
social impact