In this study, an innovative Low Temperature Combustion (LTC) system named Temperature Controlled Reactivity Compression Ignition (TCRCI) is presented, and a numerical optimization of the hardware and the operating parameters is proposed. The studied combustion system aims to reduce the complexity of the Reaction Controlled Compression Ignition engine (RCCI), replacing the direct injection of high reactivity fuel with a heated injection of low reactivity fuel. The combustion system at the actual state of development is presented, and its characteristics are discussed. Hence, it is clear that the performances are highly limited by the actual diesel-derived hardware, and a dedicated model must be designed to progress in the development of this technology. A Computational Fluid Dynamics (CFD) model suitable for the simulation of this type of combustion is proposed, and it is validated with the available experimental operating conditions. The Particle Swarm Optimization (PSO) algorithm was integrated with the Computational Fluid Dynamic (CFD) software to optimize the engine combustion system by means of computational simulation. The operating condition considered has a relatively high load with a fixed fuel mass and compression ratio. The parameters to optimize are the piston bowl geometry, injection parameters and the boosting pressure. The achieved system configuration is characterized by a wider piston bowl and injection angle, and it is able to increase the net efficiency of 3% and to significantly reduce CO emissions from 0.407 to 0.136 mg.

Combustion Modeling Approach for the Optimization of a Temperature Controlled Reactivity Compression Ignition Engine Fueled with Iso-Octane

Pelosin M.;Lucchini T.;Zhou Q.
2022-01-01

Abstract

In this study, an innovative Low Temperature Combustion (LTC) system named Temperature Controlled Reactivity Compression Ignition (TCRCI) is presented, and a numerical optimization of the hardware and the operating parameters is proposed. The studied combustion system aims to reduce the complexity of the Reaction Controlled Compression Ignition engine (RCCI), replacing the direct injection of high reactivity fuel with a heated injection of low reactivity fuel. The combustion system at the actual state of development is presented, and its characteristics are discussed. Hence, it is clear that the performances are highly limited by the actual diesel-derived hardware, and a dedicated model must be designed to progress in the development of this technology. A Computational Fluid Dynamics (CFD) model suitable for the simulation of this type of combustion is proposed, and it is validated with the available experimental operating conditions. The Particle Swarm Optimization (PSO) algorithm was integrated with the Computational Fluid Dynamic (CFD) software to optimize the engine combustion system by means of computational simulation. The operating condition considered has a relatively high load with a fixed fuel mass and compression ratio. The parameters to optimize are the piston bowl geometry, injection parameters and the boosting pressure. The achieved system configuration is characterized by a wider piston bowl and injection angle, and it is able to increase the net efficiency of 3% and to significantly reduce CO emissions from 0.407 to 0.136 mg.
2022
combustion system optimization
fuel efficiency
Low Temperature Combustion (LTC)
numerical simulation
Temperature Controlled Reactivity Compression Ignition (TCRCI)
File in questo prodotto:
File Dimensione Formato  
02-energies-15-08216-v2.pdf

accesso aperto

Dimensione 16.41 MB
Formato Adobe PDF
16.41 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1224793
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact