Vibration-based damage detection in civil structures using data-driven methods requires sufficient vibration responses acquired with a sensor network. Due to technical and economic reasons, it is not always possible to deploy a large number of sensors. This limitation may lead to partial information being handled for damage detection purposes, under environmental variability. To address this challenge, this article proposes an innovative multi-level machine learning method by employing the autoregressive spectrum as the main damage-sensitive feature. The proposed method consists of three levels: (i) distance calculation by the log-spectral distance, to increase damage detectability and generate distance-based training and test samples; (ii) feature normalization by an improved factor analysis, to remove environmental variations; and (iii) decision-making for damage localization by means of the Jensen-Shannon divergence. The major contributions of this research are represented by the development of the aforementioned multi-level machine learning method, and by the proposal of the new factor analysis for feature normalization. Limited vibration datasets relevant to a truss structure and consisting of acceleration time histories induced by shaker excitation in a passive system, have been used to validate the proposed method and to compare it with alternate, state-of-the-art strategies.

Damage Detection in Largely Unobserved Structures under Varying Environmental Conditions: An AutoRegressive Spectrum and Multi-Level Machine Learning Methodology

Entezami A.;Mariani S.;
2022-01-01

Abstract

Vibration-based damage detection in civil structures using data-driven methods requires sufficient vibration responses acquired with a sensor network. Due to technical and economic reasons, it is not always possible to deploy a large number of sensors. This limitation may lead to partial information being handled for damage detection purposes, under environmental variability. To address this challenge, this article proposes an innovative multi-level machine learning method by employing the autoregressive spectrum as the main damage-sensitive feature. The proposed method consists of three levels: (i) distance calculation by the log-spectral distance, to increase damage detectability and generate distance-based training and test samples; (ii) feature normalization by an improved factor analysis, to remove environmental variations; and (iii) decision-making for damage localization by means of the Jensen-Shannon divergence. The major contributions of this research are represented by the development of the aforementioned multi-level machine learning method, and by the proposal of the new factor analysis for feature normalization. Limited vibration datasets relevant to a truss structure and consisting of acceleration time histories induced by shaker excitation in a passive system, have been used to validate the proposed method and to compare it with alternate, state-of-the-art strategies.
2022
Environmental variability
Factor analysis
Limited sensors
Markov Chain Monte Carlo
Spectral estimation
Structural health monitoring
Physical Therapy Modalities
Vibration
Acceleration
Machine Learning
File in questo prodotto:
File Dimensione Formato  
Sensors_2022.pdf

accesso aperto

Descrizione: Damage Detection in Largely Unobserved Structures under Varying Environmental Conditions: An AutoRegressive Spectrum and Multi-Level Machine Learning Methodology
: Publisher’s version
Dimensione 6.19 MB
Formato Adobe PDF
6.19 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1224787
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 8
social impact