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Abstract: Vibration-based damage detection in civil structures using data-driven methods requires
sufficient vibration responses acquired with a sensor network. Due to technical and economic reasons,
it is not always possible to deploy a large number of sensors. This limitation may lead to partial
information being handled for damage detection purposes, under environmental variability. To
address this challenge, this article proposes an innovative multi-level machine learning method by
employing the autoregressive spectrum as the main damage-sensitive feature. The proposed method
consists of three levels: (i) distance calculation by the log-spectral distance, to increase damage
detectability and generate distance-based training and test samples; (ii) feature normalization by an
improved factor analysis, to remove environmental variations; and (iii) decision-making for damage
localization by means of the Jensen–Shannon divergence. The major contributions of this research are
represented by the development of the aforementioned multi-level machine learning method, and by
the proposal of the new factor analysis for feature normalization. Limited vibration datasets relevant
to a truss structure and consisting of acceleration time histories induced by shaker excitation in a
passive system, have been used to validate the proposed method and to compare it with alternate,
state-of-the-art strategies.

Keywords: structural health monitoring; limited sensors; environmental variability; spectral estimation;
Markov Chain Monte Carlo; factor analysis

1. Introduction

Civil structures must be monitored to detect, ideally in real time, any damage due
to aging, material deterioration or unexpectedly large excitations. Structural health moni-
toring (SHM) systems provide means to assess the health and safety of civil, mechanical,
and aerospace structures by exploiting various data such as vibration responses (e.g., ac-
celeration time histories, modal data, strain, etc.) [1–5], images [6,7], and videos [8,9]. The
primary step of SHM is the evaluation of the state of the monitored structure for damage
detection purposes: this is known as early damage detection. The main goal of the afore-
mentioned step is to seek whether damage has been triggered anywhere in the structural
system. Although the implementation of early damage detection methods appears simple,
the accuracy of the subsequent SHM steps (namely, damage localization and quantification)
largely depends on the effectiveness of early damage detection.

Due to recent advances in sensing and data acquisition systems, the strategies in
the SHM realm have been shifted from model-driven techniques under the concept of
finite element model updating [10–13] to data-driven or data-based methods based on
statistical pattern recognition and machine learning [1,14–17]. In contrast to model-based
techniques that require elaborate numerical models of real-life structures, data-driven
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methods are only based on raw measurements with no requirement for numerical modeling
and model updating strategies. In other words, the main objective of data-driven methods
is to discover meaningful information (features) in the measured data and then use such
features for decision-making within the context of machine learning [18]. Accordingly, these
approaches basically consist of feature extraction and statistical analysis levels. Feature
extraction focuses on delving into the measured vibration data to obtain certain damage-
sensitive features. A damage-sensitive feature is any information extracted from the raw
measurements, which must be sensitive to damage and not dependent on other factors,
such as operational and environmental conditions. Since most of the data-based methods
handle vibration signals, advanced signal processing techniques are necessary to extract
damage-sensitive features from them [19].

The subsequent statistical analysis handles the obtained damage-sensitive features
to make a decision concerning damage occurrence via statistical approaches. For this
purpose, the feature datasets relevant to two different structural states must be compared.
The process of damage detection via statistical analysis is thus based on the comparison
between two structural states at different times, in order to identify discrepancies indicative
of damage occurrence. To this aim, the most relevant techniques are statistical distance
measures, which may depend upon the type of damage-sensitive features to handle. Some
of the useful univariate and multivariate distance techniques to mention include the
Mahalanobis distance [20–22] and Kullback–Leibler divergence [15,23,24], dynamic time
warping [25], and other damage indices based on relative errors [26,27], classical and robust
multidimensional scaling algorithms [28,29], etc.

An initial step of the entire vibration-based SHM strategy is related to the design of
the case-specific sensor network, so as to capture sufficient dynamic information on the
structure [30–32]. The effectiveness of the SHM system relies on the sensitivity to damage
of any feature extracted from the sensed structural responses. This is typically attained
with pervasive or dense sensor networks, so that the structural behavior results can be
largely observed. Since structural damage directly affects and changes inherent structural
properties, particularly stiffness, a damage-sensitive feature is claimed to also be relevant to
the structural properties or their variations. An important issue in SHM applications is thus
represented by the preliminary design of the sensor deployment, to provide observations
or measurements at specific locations [33]. Although advances in sensing technology can
enable the implementation of a large number of sensors in the network, their cost and
supporting instruments may represent serious obstacles. Furthermore, a majority of civil
structures in need of SHM are complex and large-scale, and the installation of several
sensors may not be trivial and affordable. Due to such circumstances, it is inevitable that
the SHM procedure is carried out by exploiting information acquired by a limited number
of sensors only [34–37].

Overall, despite the success and applicability of various feature extraction and statis-
tical analysis techniques, the adoption of a limited number of sensors may prevent these
approaches from capturing sufficient dynamic characteristics or damage-sensitive features
to provide reliable damage detectability. This issue becomes even worse when the limited
information is coupled with the environmental and/or operational variability conditions.
These are deceptive effects, such as temperature fluctuations, humidity and moisture varia-
tions, wind speed, human movements, and traffic, that provide changes similar to damage
in the sensed structural response and lead to an outlier masking problem [21]. In such
cases, false alarms and erroneous detection results present the major challenges [20,38,39].
On the other hand, depending upon the type of damage sensitive feature used in SHM, the
level of variability can fluctuate [2].

In order to deal with the aforementioned limitations and challenges, this article pro-
poses a parametric spectral-based feature extraction approach and an innovative multi-level
machine learning method for early damage detection in cases characterized by a limited
number of sensors and under environmental variability. Hence, the main objective of
this research is to assess whether a structure with limited information collected through
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the sensors, has actually been affected by damage or is still in its normal state. The pro-
posed method of feature extraction is based on an autoregressive (AR) representation, to
model the measured vibrations in the time-domain and estimate their spectra as damage-
sensitive features by means of the Burg method. The proposed machine learning method
consists of three main levels: (i) distance calculation by the log-spectral distance (LSD)
to increase damage detectability and generate distance-based training and test samples,
(ii) removal of environmental variability via feature normalization by an improved factor
analysis with Markov Chain Monte Carlo (MCMC) and Hamiltonian Monte Carlo (HMC)
sampler, or with a sampling called MCMC-FA to deal with the classical factor analysis,
and (iii) decision-making for damage localization by a relative entropy measure called
Jensen–Shannon (JS) divergence.

The improved factor analysis aims at dealing with the limitation of the covariance
matrix estimation, which represents an important item in factor analysis, when the multi-
variate dataset is low-dimensional. In this case, the estimate of the covariance matrix may
become problematic [40]. Therefore, the proposed method exploits the merits of the MCMC
technique and of Hamiltonian sampling to increase the size of the multivariate data, and
guarantees an appropriate estimate of the covariance matrix. The major contributions of
this article are given by the development of an innovative multi-level machine learning
method coping with the issue of limited sensor deployment and under environmental
variability, and the proposal of an improved factor analysis for removing any variability in
the data. The effectiveness and performance of the proposed method are assessed through
limited vibration data relevant to a laboratory truss structure, known as the Wooden Bridge.
Some comparative analyses were carried out to demonstrate the superiority of the methods
presented in this article over existing techniques. Results have shown that the use of the
AR spectrum provides a more reliable result in terms of damage detection, as compared
to the direct use of AR coefficients in the case of limited information. Above all, it has
been observed that the proposed multi-level machine learning method is able to accurately
detect damage in cases characterized by a limited sensor deployment and environmental
variability, owing essentially to the improved factor analysis approach.

2. Parametric Spectral-Based Feature Extraction by AR Modeling

Spectral analysis may provide several approaches to characterize the frequency content
of a signal; all of them are based on estimating the power spectral density (PSD) of the
signal from its time-domain representation. The output spectral density thus characterizes
the frequency content of the said signal, managed as a stochastic process [41].

Spectral analysis can be carried out by means of either non-parametric or parametric
methods. Non-parametric techniques, such as the FFT-based Welch’s method or peri-
odogram, do not require prior detailed knowledge of the signal. The main advantage of
these methods is the capability to handle any kind of signal. Parametric methods, such as
Burg, covariance, and MUSIC ones, are model-based approaches that incorporate instead
a prior knowledge of the signal and can therefore yield more accurate spectral estimates.
A model to generate the signal can be based on a number of parameters that must be
estimated from the observed data. Departing from the model and estimated parameters,
any algorithm computes the relevant, model-dependent power density spectrum. These
methods thus estimate the PSD by first tuning the parameters of the (linear) system able
to generate the signal to handle. Parametric methods perform better than non-parametric
ones, with an additional tendency towards higher resolutions.

The AR representation is commonly used for linear systems in parametric spectral-
based approaches. Such a model of a stationary stochastic process is known as an all-pole
one in signal processing sense, or a filter with all its zeroes at the origin of the z-plane.
Given the sensed vibration signal y(t), the AR model reads:

y(t) + θ1y(t− 1) + · · ·+ θpy(t− p) = r(t) (1)
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where r(t) is an independent, identically distributed stochastic sequence with zero mean at
time t, known as the residual error. In Equation (1), p is the order of the AR model, and
θ1 . . . θp are the model coefficients to be estimated to fit the observations. By exploiting
the model order and coefficients, the AR spectrum can be estimated [42]. To set the model
order, in this work the iterative methodology proposed in Entezami and Shariatmadar [26]
was adopted: this methodology rests on a residual analysis via the Ljung–Box Q-test, and
the AR order is chosen to satisfy the main criteria of the aforementioned hypothesis test.

One of the most effective approaches to estimate the AR spectrum is the Burg method.
Compared to other AR spectral estimation techniques, the Burg method bears the main
advantages of resolving closely spaced sinusoids in signals with low noise levels, and
estimating short data records with high accuracy [43]. In addition, the method assures
a stable AR model within a computationally efficient parameter estimation procedure.
Overall, the method is based on the minimization of the forward and backward prediction
errors, also satisfying the Levinson-Durbin recursion [44]. It avoids the calculation of
the autocorrelation function by estimating the reflection coefficients directly. In concrete
terms, the pth reflection coefficient is a measure of the correlation between y(t) and y(t − p),
once the correlation due to the observations y(t − 1) . . . y(t − p + 1) has been filtered out;
these reflection coefficients can be transformed into autoregressive parameters by means
of the Levinson-Durbin recursion formula. Accordingly, here the AR spectrum P(ω) is
estimated through:

P(ω) =
σ2

r∣∣∣∣1− p
∑

k=1
θke−jωk

∣∣∣∣2
(2)

where σ2
r denotes the variance of the model residuals.

3. Proposed Multi-Level Machine Learning Method

The proposed machine learning method is composed of three main levels. The first
level aims at calculating the distance between two spectra obtained for the training and test
datasets, respectively, relevant to structural states in the baseline and monitoring phases,
by using the LSD. In this regard, one can generate new damage-sensitive features from the
initial features, that is the AR spectra. Since these new features originate from the distance
calculation procedures relevant to the initial ones, the damage detectability in case of a
limited number of sensors is expected to enhance.

To manage the negative effects of environmental variability in the second level, the
proposed MCMC-FA method is employed to remove such variability in the distance-based
features. Finally, the third procedure level exploits the normalized features provided
by the MCMC-FA, to detect damage via the JS-divergence with the aid of the classical
kernel density estimation (KDE). To clarify the entire procedure, Figure 1 depicts the
flowchart for feature extraction and the three-level machine learning method. In the third
level, once the distance values of the features regarding the normal conditions have been
determined, an alarming threshold for decision-making is also estimated [38,45,46]. To
this aim, the proposed strategy exploits the threshold estimation method proposed in
Sarmadi and Yuen [47] on the basis of the extreme value theory, and the technique of
peak-over-threshold.

3.1. Level I: Training and Test Data Generation by Log-Dpectral Distance

As previously mentioned, the main objective of the first level of the procedure is
to provide multivariate training and test datasets, using the AR spectra related to the
normal and current states of the structure. For this purpose, it is necessary to calculate the
(dis)similarity between those spectra via the LSD, which is a symmetric distance measure
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able to compute the discrepancy between two sets of frequency-domain data [48]. Given
the two spectra P(ω) and P(ω), the LSD is given by:

LSD =

√
1

2π

∫ π

−π

∣∣log P(ω)− log P(ω)
∣∣2dω =

√
1

2π

∫ π

−π

∣∣∣∣log
P(ω)

P(ω)

∣∣∣∣2dω (3)

If the spectra are discrete, the LSD is provided as follows [49], p. 365:

LSD =

√√√√ 1
np

np

∑
i=1

∣∣log P(i)− log P(i)
∣∣2 =

√√√√ 1
np

np

∑
i=1

∣∣∣∣log
P(i)
P(i)

∣∣∣∣2 (4)

where np denotes the number of spectrum samples. The LSD value equals zero if and only
if the two spectra P(ω) and P(ω) are exactly the same; therefore, any difference between
them leads to an LSD value larger than zero. In case P(ω) and P(ω) are the AR spectra at a
specific sensor location, respectively, associated with the normal and current states of the
structure, a deviation of P(ω) from P(ω) is likely indicative of damage occurrence.

Figure 1. Flowchart of the proposed method: (a) feature extraction, (b) and multi-level machine
learning method.

The above-mentioned procedure is based on the distance calculation between two
spectra. In reality, there is more than a single sensor mounted on the structure to sense
its response to external actions, and dynamic tests are repeated several times to collect
data measurements. If ns sensors are deployed over the structure and if the dynamic test
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is repeated nm times, indices S1 . . . Sc are used denote the nc normal conditions of the
structure in the baseline phase: therefore, the training dataset is given by X ∈ Rnx×ns , where
nx = nm×(nc−1). As the distance of any spectrum from itself in a normal condition is always
zero and does not need to be accounted for in the analysis, in what precedes nc−1 data
collections are considered to provide nx. It is worth remarking that each column of X is the
LSD between the spectra corresponding to two different normal conditions at the same
sensor location.

Now, let Su be the current structural condition, for which the health of the structure in
terms of damage occurrence must be monitored. Distance calculation is carried out now by
computing the LSD between the spectra corresponding to the normal and current states at
the same sensor location. This procedure is repeated to obtain all distance values for the nc
normal conditions at the ns sensor locations, for all the nm measurements. The test matrix
is thus obtained as Z∈Rnz×ns , where nz = nm × nc.

3.2. Level II: Feature Normalization by MCMC-FA

Due to the effects of environmental and/or operational variability in real-world
circumstances, it is essential to remove such variability from the data so as to provide
more reliable features sensitive to damage only. In the context of SHM, the removal of
environmental and/or operational variability is often carried out by certain technical
strategies called data or feature normalization [18]. To avoid any confusion regarding the
removal of the aforementioned variability from measured data (i.e., acceleration time
histories) or features (e.g., modal data or statistical characteristics of the time series), the
term feature normalization is here adopted to refer to procedures aiming to eliminate
environmental and/or operational variability from features extracted from measurements.

Such procedures are often implemented by handling a linear model as the residual or
difference between the original features including the environmental and/or operational
variability, and the output features of a machine learning model trained ad hoc. In this
regard, the aforementioned final features contain all the information about structural
damage, which must be distinguished from the variability of the context [18].

3.2.1. Classical Factor Analysis

Factor analysis is a statistical technique to analyze multivariate data, which either
aims to describe the variability among observed variables or to reduce the dimension of
data. In both cases, the goal is attained in terms of a potentially low number of unobserved
variables called latent variables or factors. The main objective of factor analysis is to develop
a linear model to identify such unobservable variables [50].

Given the multivariate data X∈Rnx×ns , the linear factor model can be expressed in
matrix form as:

X = ΛΨ + E (5)

where: Λ∈Rnx×nf is the matrix that includes factor loadings; Ψ∈Rnf×ns is the matrix of the
latent variables or factor scores; and E∈Rnx×ns is the matrix of residuals or errors in factor
modeling, which are assumed to be independent of the factor scores. Within the field of
SHM, factor analysis is used to normalize features by removing the variability in the initial
data. The covariance matrix Σ of the initial data or feature set X must be estimated, and
decomposed in the following form:

Σ = ΛΛT + Φ (6)

where Φ is a diagonal matrix gathering the specific variances. To obtain Λ and Φ, the
maximum likelihood estimation method can be adopted via the expectation maximization
algorithm [50]. Once these matrices have been determined, the matrix of factor scores is
obtained as follows:

Ψ = ΛT
(

Φ + ΛΛT
)−1

X (7)
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Factor analysis or any other regression modeling approach has the ability to reconstruct
the initial data or generate the independent residual data. Since the matrices of the factor
loadings and of scores are known, the feature normalization model of the features of the
normal condition can be defined as Ex = X − ΛΨ. Through this expression, the variability
in the initial data X caused by the environmental and/or operational conditions can be
removed.

The same linear model can be used to eliminate the variability in the features regard-
ing the current state of the structure in the monitoring phase. Given the feature matrix
Z*∈Rnx×ns , the same estimated matrices of the factor loadings and scores can be used to
obtain the residual matrix Ez = Z* − ΛΨ; note that Z* is a subset of Z, which contains
nc sets of Z*. The residual matrices Ex and Ez can now be considered as the structural
damage-sensitive features, to be adopted at the decision-making level.

3.2.2. Markov Chain Monte Carlo Factor Analysis

The classical factor analysis is suitable for multivariate data when the dimension of
sampling is high; in other words, this technique is applicable for dimensionality reduction,
further than for data normalization. A main limitation of this approach may be the size of
the multivariate data: in most cases, it is assumed that data of interest are high-dimensional,
with a normality property of the factors [51]. It may then become problematic to estimate
a covariance matrix when the multivariate data of interest are low-dimensional with a
non-Gaussian distribution. The present work is intended to exploit the classical factor
analysis for low-dimensional multivariate data, owing to the use of the MCMC and HMC
samplers. The core of the proposed MCMC-FA method is to generate random Gaussian
samples from the available data, and estimate the covariance matrix of such extended
multivariate data.

In probability theory, MCMC is a computer-driven sampling method that allows the
characterization of a probability distribution model by randomly sampling values out of the
distribution of interest, without a thorough knowledge of its mathematical properties [51].
The term “Monte Carlo” refers to the practice of estimating the properties of a distribution
by examining random samples obtained from the distribution of interest. The term “Markov
Chain” refers instead to a sequential process of random sample generations, leading to new
samples depending only on those immediately preceding the current ones [52].

The HMC sampler is a gradient-based MCMC method that draws samples from a
target probability density, which is the multivariate Gaussian distribution here, of the
low-dimensional data X [53]. The HMC sampler is based on a logarithmic function of
the target distribution, its gradient and a momentum vector λ. Using these features, a
Hamiltonian function H(X,Ω) based on Hamiltonian dynamics is defined as follows:

H(x,λ) = U(x) + V(λ) (8)

where: x∈X; U(x) denotes the logarithmic function of the probability of interest; and
V(λ) = 1

2 λTM−1λ, M is a symmetric positive definite matrix that is typically diagonal or a
scalar multiple of the identity matrix. V(λ) can be the opposite of the logarithmic probability
density of the zero-mean Gaussian distribution with covariance matrix M [53]. Accordingly,
Hamiltonian dynamics operates on x and λ to develop equations that aim at determining
how the vectors x and λ change over time in the following forms:

dxk
dt

=
∂H
∂λk

=
∂V(λ)

∂λk
(9)

dλk
dt

= − ∂H
∂xk

= −∂U(x)
∂xk

(10)

where k = 1,2, . . . ,ns. By means of Equations (9) and (10), and relevant initial conditions in
terms of x0 and λ0 at time t0, it is possible to simulate the evolution of the vectors via the
leapfrog method [53].
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The overall aim of the procedure is to predict X for pre-defined chain (C) and sampling
(N) numbers. As such, the HMC algorithm is used to draw N samples of X from the target

probability distribution, designated here as
∼
X ∈ RN×ns , and C chains within an iterative

strategy (i.e., i = 1, . . . ,C and j = 0, . . . , N−1 for sampling
∼
X
(i)

j+1) and with the acceptance
probability criterion from the Gelman–Rubin convergence statistic [54]. If convergence
is attained, the simulated parameters at the (j + 1)th iteration is fixed; otherwise, the

simulated parameters of the jth iteration should be selected. Once the C sets of
∼
X have

been determined, the average of these C sets is considered as the final multivariate datum

for the covariance estimation. Using the estimated covariance matrix
∼
Σ, the procedure of

Section 3.2.1, namely the decomposition of the covariance matrix
∼
Σ into the matrices

∼
Λ and

∼
Φ and the estimation of the matrices

∼
Λ and

∼
Ψ, is adopted to set the new residual matrices

∼
Ex = −

∼
Λ
∼
Ψ and

∼
Ez = −

∼
Λ
∼
Ψ.

The same HMC sampling procedure is next carried out for the multivariate data

relevant to the current state, namely for Z, in order to set
∼
Z ∈ RNz×ns , where Nz = N×nc.

The extraction of the residual matrix
∼
Ez is carried out for each of the nc sets of

∼
Z.

3.2.3. Determination of the Number of Factors

Factor analysis is a parametric statistical approach, wherein the number of factors is
the main unknown parameter to be determined. Although some analytical methods were
proposed to tackle this issue [55,56], they are not related to the main challenges of this
study, namely the limited number of sensors and the effects of environmental variability.
For this reason, an effective approach is proposed to determine the number of factors of the
MCMC-FA method with a specific focus on the aforementioned challenges.

First, as the vibration data collected with few sensors only are considered, the number
of factors is fixed to also remain limited. Only the vibration data relevant to the normal
conditions are assumed available; the number nf of factors must be thus compatible with the
number ns of sensors, so that nf < ns. Second, the detrimental effects of the environmental
variability on the process of decision-making must be assured to be minimized. In [47],
it was demonstrated that false positive and false negative solutions are linked to the
variability in the output of the decision-making level; therefore, nf is set to guarantee that
the decision-making bears the minimum variance. An iterative procedure is thus proposed
to determine nf by evaluating the variance of the output of the decision-making process,
to finally keep the value corresponding to the minimum variance. For brevity, the entire
procedure is illustrated in Figure 2 through the corresponding flowchart.

3.3. Level III: Decision-Making by Jensen-Shannon Divergence

Decision-making via statistical distance measures represents one of the most effective
and efficient strategies due to its simplicity, computational efficiency, and non-parametric
properties. Depending upon the types of data (features) to handle, being univariate vs.
multivariate, random vs. deterministic, probabilistic vs. non-probabilistic, correlated vs.
uncorrelated properties, there exist numerous measures that can be adopted for decision-

making [49]. Having considered the multivariate datasets
~
Ex and

~
Ez provided by feature

normalization, we propose to use the JS-divergence method with the aid of KDE for early
damage detection. Although the KL-divergence is the most popular probabilistic measure,
its non-symmetric and infinity properties are the main reasons to seek alternate solutions,
such as e.g., the JS-divergence, which is instead a symmetric measure.
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Figure 2. Flowchart of the proposed approach to set the optimal number of factors.

3.3.1. Relative Entropy Measures in Information Theory

The KL and JS divergences fall into the family of statistical measures based on infor-
mation theory and Shannon entropy. Shannon entropy is the main concept of information
theory, and pertains to a single random variable or a random vector. More precisely,
the entropy of a random variable can be defined as either a measure of the uncertainty
of that variable, or a measure of the amount of information required on average to de-
scribe the random variable itself [57]. To develop this theory for decision-making, the
KL-divergence method, called relative entropy measure, was proposed to compute the
dissimilarity between two probability distributions, as it gives a measure of the extent to
which the probability distribution of interest deviates from a reference one.

Given the probability distributions p = [p1, . . . , pn] and q = [q1, . . . , qn], where n > 1,
the KL divergence is given as follows:

dKL(p, q) =
n

∑
i=1

pi ln
(

pi
qi

)
(11)

where dKL(p,q) > 0, being dKL(p,q) = 0 if and only if p = q. Due to Equation (11), it must
be assumed that qi 6= 0 for every i. One of the main drawbacks of the KL divergence is its
non-symmetric behavior, which means that dKL(p,q) 6= dKL(q,p); hence, this measure cannot
satisfy all the conditions of a distance metric. Another drawback of the KL divergence is
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that it may diverge to infinity depending on the underlying probability distribution [58].
To avoid those limitations for decision-making, it is possible to adopt the JS-divergence.
This entropy-based measure can be interpreted as the total KL-divergence away from
the average distribution. For the probability distributions p and q, the JS-divergence is
written as:

dJS(p, q) =
1
2

n

∑
i=1

pi ln
(

2pi
pi + qi

)
+ qi ln

(
2qi

pi + qi

)
(12)

where dJS(p,q) > 0, dJS(p,q) = 0 if and only if p = q, and dJS(p,q) = dJS(q,p). Due to these
properties and to the fact that the JS-divergence always displays a finite value, it can be
adopted as a distance metric.

3.3.2. Damage Detection Scheme

To detect damage via the JS-divergence, the probability distribution of each feature
vector in Ex and Ez must be computed. By assuming that p and q, respectively, refer to the
normal and current states, the main aim is now to link them with feature samples of Ex
and Ez.

In the case of any prior knowledge about the distributions of the feature samples, the
best method to obtain the aforementioned probability distributions is to use the KDE. This
technique is based on a smoothing function and on a bandwidth value, which controls
the smoothness of the resulting density curve. For the variable x, the probability density
function determined by the kernel estimator is given by [59]:

f (x) =
1

nb

n

∑
i=1

K
(

x− xi
b

)
(13)

where: x1, . . . , xn are random samples obtained from an unknown distribution; n is the sam-
ple size; K(.) denotes the kernel smoothing function, which has to satisfy

∫ ∞
−∞ K(x)dx = 1;

and b > 0 is a smoothing parameter, called bandwidth. The most common kernel smoothing
functions are the uniform, Gaussian, Epanechnikov, bi-weight, tri-weight, and triangle
ones. The bandwidth of the kernel is a free parameter, with a significant effect on the final
estimate; the most common optimality criterion used to select it is the mean integrated
squared error [59].

After estimating the probability distributions of the feature vectors in
~
Ex and

~
Ez, the

JS-divergence is adopted to determine the distance between the probability distributions.
This procedure is implemented first for the baseline, and then for the monitoring phase.

In the first phase, the distance between feature vectors in
~
Ex is computed to obtain the

distance values relevant to the normal condition, which are next used to estimate the
alarming threshold. In this work, the threshold estimation method proposed in Sarmadi and
Yuen [47] was adopted, by exploiting the extreme value theory and the peak-over-threshold
technique under the generalized Pareto distribution for threshold estimation. In this way,
no false alarms in decision-making using the available (training) data are guaranteed to
occur. Second, in the monitoring phase the distance between the probability distributions

relevant to feature vectors in
~
Ex and

~
Ez is performed. Accordingly, if the current state

results to be damaged, the distance values are expected to exceed the estimated alarming
threshold; if this does not occur, then the current state can be targeted as undamaged [38].

4. Case Study: The Wooden Bridge

The effectiveness and reliability of the proposed method are now assessed with a
series of vibration measurements relevant to a laboratory truss structure under actual
environmental variability. The structure is known as the Wooden Bridge [60], and is
shown in Figure 3. The bridge was equipped with 15 accelerometers, whose deployment
is also depicted in the figure. The sensors measured the acceleration time histories at
three different longitudinal positions, and an electro-dynamic shaker was used to excite
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the structural vertical, transverse, and torsional modes under a random excitation source.
The acceleration responses were all comprised of 8192 data points, evenly spaced during
32 s of data recording with a sampling frequency of 256 Hz. The measurements were
collected over three days (18, 25 and 29 May), and represent undamaged and damaged
cases under varying environmental conditions in terms of temperature and humidity [15].
All test measurements carried out on the first two days, and a few on the third day were
representative of the normal condition of the bridge, see Table 1. All algorithms discussed
in this study have been implemented in MATLAB R2017a.

Figure 3. The Wooden Bridge [60].

Table 1. Structural states of the Wooden Bridge.

Day Condition Label Added Mass (g) Phase

18 May Undamaged HC1 -
Baseline

25 May Undamaged HC2 -

29 May Undamaged HC3 -

Monitoring29 May Damaged

DC1 23.5

DC2 47.0

DC3 70.5

DC4 123.2

DC5 193.7

The effects of damage in the bridge were fictitiously obtained by adding a mass at the
end of the girder, close to Sensor 4. The added mass varied in the range 23.5–193.7 g, in order
to represent a varying severity of damage, see Table 1. The number of test measurements
nt was set to 20, for both the undamaged and the damaged states. According to common
procedures of machine learning, the first two undamaged states of the structure (i.e., HC1,
HC2 in Table 1) were considered in the baseline phase, so that nc = 2. The structural
states HC3 and DC1-5 were instead exploited in the monitoring period, as current states.
Accordingly, the goal of this analysis is to show whether the proposed method is able to
detect HC3 and DC1-DC5 as the normal and damaged conditions, respectively.

4.1. Response Modeling and Feature Extraction

As detailed in Section 2, the first step of response modeling by the AR representation
is the determination of the model order for each vibration signal, sensor location and test
measurement. Only the vibration datasets relevant to states HC1 and HC2 in the training
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phase were handled to determine the said model orders. Next, the average order at each
sensor location was adopted in the monitoring stage for states HC3, and DC1-DC5. By
adopting the iterative approach proposed in [26], results are reported in Figure 4 in terms
of the average AR order for Sensors 1–15 and for all test measurements. Using the obtained
orders, the AR spectrum at each sensor location was estimated by means of the Burg method
for all structural states. Figure 5 shows exemplary results related to the AR coefficients for
Sensor 4, for the first test measurement of HC1, DC1 and DC5 states. It is worthy to note
that, since the Wooden Bridge was excited by a shaker (namely, a measurable excitation
condition), an AR representation was adopted to model the vibration responses. In case
of ambient vibrations (namely, unmeasurable excitation conditions), time series models
for response modeling should be based on error polynomial functions such as ARMA and
ARARX [1,29].

Figure 4. Average AR orders for all sensor locations and test measurements relevant to HC1 and HC2.

Figure 5. AR coefficients relevant to Sensor 4 for the first test measurement of HC1, DC1 and DC5:
(a) states HC1 and DC1; (b) states HC1 and DC5.

The main purpose of this comparison is to assess the sensitivity to damage of these
features, understanding that the states DC1 and DC5 are characterized by the smallest and
largest damage severity, respectively. From Figure 5a, it remains difficult to identify any
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difference between the coefficients of the AR models regarding HC1 and DC1, while there
is a clear difference between the two sets in Figure 5b. Although the comparison between
the AR coefficients of HC1 and DC5 reveals the sensitivity to damage, the conclusion
regarding Figure 5a emphasizes the necessity of applying a robust statistical approach for
early damage detection.

4.2. Damage Detection with Limited Sensor Deployment and Under Environmental Effects

In order to detect damage in the Wooden Bridge in the case of a limited number of
sensors deployed over the structure, four scenarios were defined and reported in Table 2.
The first scenario is characterized by all sensors deployed over the structure handled for
measurements, and here represents a reference situation of a partially observed structure
equipped with a monitoring system (putatively) able to capture damage inception. The
second and third scenarios are characterized by a decreasing number of sensors (roughly
50% of all deployed sensors); the difference between the two links to the fact that the third
scenario does not consider the data obtained with Sensors 4 and 10, which are closest to
the damaged area. Finally, the last scenario allows for only roughly 25% of the deployed
sensors, with no data taken from sensors installed on the damaged area. For each scenario,
the AR spectrum was built on the basis of the considered sensors only; hence, the goal of
this investigation is to show how the proposed multi-level machine learning method can
robustly provide an SHM strategy.

Table 2. Considered sensor deployment scenarios.

Deployment Case Labels of Active Sensors Description

1 1–15 100% of deployed sensors
2 2,4,6,7,9,10,14 ~50% of deployed sensors

3 1,3,5,8,11,12,15 ~50% of deployed sensors with no sensors
installed on the damaged area

4 2,5,11,15 ~25% of deployed sensors with no sensors
installed on the damaged area

At the first level of the proposed method, the initial training datasets for the four
scenarios are, respectively, represented by X1 ∈ R20 × 15, X2 ∈ R20 × 7, X3 ∈ R20 × 7, and
X4 ∈ R20 × 4, where nx = 20 and ns = 15, 7, 7 and 4, due to the decreasing number of mea-
surements allowed for. To obtain these matrices, the distance calculation was implemented
to determine the LSD values between the AR spectra of states HC1 and HC2. Next, the
distance calculation was implemented to measure the LSD values between the AR spectra
related to each of the current states, and to the aforementioned normal conditions. The test
datasets for the current states in the four scenarios are accordingly given by Z1∈R240×15,
Z2∈R240 × 7, Z3∈R240 × 7, and Z4∈R240 × 4, where the number of rows (240) was obtained
by the six sets of the test matrices, each consisting of 40 entries due to nz = nm × nc = 20 × 2.

The proposed MCMC-FA method was then adopted to remove any potential envi-
ronmental variability from the distance-based features extracted at the first level of the
strategy. The aim was also to extend the training and test matrices by the MCMC and
HMC sampler, to better estimate the covariance matrices of X1–X4. The main features of
the sampling process are listed in Table 3. Note that the implementation of the sampling
process was based on the default functions hmcSampler, tuneSampler and drawSamples of
MATLAB R2017a.

Table 3. Features of the sampling process based on the MCMC and HMC sampler.

Number of
Chains (C)

Number of
Samples (N) Burn-in Value Probability Type

10 1000 1000 Multivariate Gaussian
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After the sampling process, 10 sets of the new extended training matrices were ob-

tained. By averaging these sets, the extended training matrices
∼
X1 ∈ R1000 × 15,

∼
X2 ∈

R1000 × 7,
∼
X3 ∈ R1000 × 7, and

∼
X4 ∈ R1000 × 4 were arrived at. The same sampling procedure

was implemented to generate the new extended test matrices
∼
Z1 ∈ R2000 × 15,

∼
Z2 ∈ R2000 × 7,

∼
Z3 ∈ R2000 × 7, and

∼
Z4 ∈ R2000 × 4 for each current state in the monitoring phase, where

now Nz = N × nc = 1000 × 2. Using these extended training matrices, the four covariance

matrices
∼
Σ1 ∈ R15×15,

∼
Σ2 ∈ R7 × 7,

∼
Σ3 ∈ R7 × 7, and

∼
Σ4 ∈ R4 × 4 were set. The factor loading

and score matrices
∼
Λ and

∼
Ψ, and the residual matrices

∼
Ex = −

∼
Λ
∼
Ψ and

∼
Ez = −

∼
Λ
∼
Ψ for each

of the deployment cases could then be extracted from the available data. To set the number
of factors, the proposed iterative approach described in Section 3.2.3 was adopted. Figure 6
shows the variations induced by the adopted number of factors on the variance of the
decision-making output (i.e., the JS-divergence values), for the four sensor deployment
cases. In the charts, the optimal values of the factors to be accounted for in the analysis,
constrained by the condition nf ≤ ns, can be then clearly identified.

Figure 6. Determination of the number of factors needed for the SFA algorithm: (a) Case 1, (b) Case 2,
(c) Case 3, (d) Case 4.

Once the residual matrices were determined, the third level of the proposed machine
learning method was initiated by estimating the probability distributions of the residual
samples via the KDE. Figure 7 reports some exemplary results regarding the estimated
probability distributions of the residual samples at Sensor 4 location, to compare the
distributions relevant to states HC1 and HC3, and states HC1 and DC1 in the second
deployment scenario. Figure 7a shows that the estimated probability distributions related
to states HC1 and HC3 are roughly similar, whereas there is a clear difference between the
distributions related to states HC1 and DC1. Note that HC3 was considered as one of the
current states in the monitoring phase, even if undamaged. Results in Figure 7a testify
that the proposed method could appropriately manage the problem of environmental
variability. On the other hand, a comparison between Figures 7a and 5a testifies that,
although the AR coefficients could not properly track the difference between states HC1
and DC1, the proposed method (namely, the distance calculation via the LSD to provide
the distance-based features, and the MCMC-FA to remove the environmental variability)
gives rise to residual samples featuring an enhanced capability to detect damage.
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Figure 7. Comparison of the estimated probability distributions of the residual samples relevant to
Sensor 4 and to the second deployment scenario: (a) states HC1 and HC3; (b) states HC1 and DC1.

Finally, the estimated probability distributions were adopted to compute the JS-
divergence for early damage detection. First, the distance calculation was used for the
normal conditions to provide the distance values and estimate the alarming threshold.
Second, the probability distributions relevant to the normal and current states were used
to compute the distance values for each current state in the monitoring phase. The results
regarding the four deployment cases are shown in Figure 8, where the first 1000 distance
values are related to the normal conditions HC1–HC2, and the remaining ones pertain to
the states HC3 and DC1–DC5. As can be seen, the first 3000 distance values regarding the
undamaged states HC1–HC3 all fall below the threshold limit, accurately labeling these
cases as undamaged or normal conditions. Even if HC3 was considered as one of the
current states in the monitoring phase, all its distance values result similar to those linked
to states HC1 and HC2, below the alarming threshold. The distance values relevant to
states DC1–DC5 instead exceed the threshold, highlighting that they represent damaged
states of the bridge. For all deployment cases, values of distances increase from state DC1
to state DC5, somehow proportionally to damage severity. Moreover, it is reported that the
MCMC and HMC sampler allowed results to be obtained independent of the number of
sensors, and with no ambiguity about the possible estimated damage severity.

4.3. Comparative Studies

Despite the accurate results achieved in terms of damage detection, it appears nec-
essary to compare the proposed method with some state-of-the-art techniques. The first
comparison is related to the use of the classical factor analysis for feature normalization, in
place of the proposed MCMC-FA method. For this comparison, the covariance matrices
of the training sets X1–X4 were estimated, to extract the residual matrices Ex and Ez for
each deployment case. These matrices were used to estimate their probability distributions
and determine the JS-divergence values. The proposed iterative approach and the extreme
value-based technique based on peak-over-threshold were also used to determine the
number of factors and estimate the alarming threshold. The results linked to the use of
the classical factor analysis are shown in Figure 9. All distance values related to states
DC1–DC4 are shown to be above the threshold limit; however, the distance values for state
HC3 also exceed this threshold, particularly in Cases 3 and 4. These erroneous results are
marked with a red circle and the term Error I in the charts. Notice that, in the machine
learning literature this kind of error is also defined as false positive or false alarm (namely,
distance values regarding the normal condition above the threshold). On this basis, all
the distance values for state HC3 above the threshold limits have to be considered false
positive errors in decision-making. It is shown that Case 1 in Figure 9a yields a smaller
number of false positives, as compared to the other cases. This outcome confirms that the
performance of the multi-level algorithm, in conjunction with the classical factor analysis
for data normalization, is degraded in the case of a limited number of sensors. Moreover,
it is worth remarking that, since all distance values relevant to the damaged cases are
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above the thresholds, no false negatives (namely, distance values related to damaged states
below the threshold) are provided. Further details regarding the performance evaluation
of machine learning techniques via false positive and false negative errors, can be found in
e.g., [38,61].

Figure 8. Damage detection by the proposed multi-level machine learning method and AR spectrum:
(a) Case 1, (b) Case 2, (c) Case 3, (d) Case 4.

Another issue is here related to an inability to remove the effects of environmental
variability. As mentioned earlier, the features of each current state were obtained from the
information related to states HC1 and HC2. Therefore, the output of each of the current
states consists of two parts of 20 samples. In Figure 9, it can be observed that there are
inter-state variations too: this error is marked with a blue circle and the term Error II. Such
latter error implies that the effects of the environmental variability were appropriately
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handled by the classical factor analysis, most likely due to an improper estimation of the
covariance matrices for the training stage caused by the low-dimensional samples. Even
if Error II is highlighted only for state DC5, the same can also be observed for the others.
In summary, the comparison of the results in terms of damage detection, as provided by
the proposed machine learning method resting on the MCMC-FA and by the classical
factor analysis, has proven that the former is superior to the latter and provides more
reliable results.

Figure 9. Damage detection by the AR spectrum, classical factor analysis, and JS-divergence:
(a) Case 1, (b) Case 2, (c) Case 3, (d) Case 4.

Another comparative study was conducted by using the PSD of each vibration signal,
as an alternate damage-sensitive feature in place of the AR spectrum. In practical terms, this
comparative analysis aims at assessing the performances of parametric and non-parametric
spectral-based feature extraction techniques. The proposed multi-level method was then
employed again to detect damage, and the corresponding results are shown in Figure 10.
Unlike the results of damage detection via the AR spectrum (see Figure 8), it is observed
that the PSD provides a low damage detectability along with false positive and false
negative errors. Although the MCMC-FA method allows for coping with environmental
effects, as testified by the limited discrepancies in the figure within each set of distance
quantities relevant to states DC1–DC5, damage detection does not prove acceptable. This
outcome demonstrates the superiority of the parametric feature extraction method over the
non-parametric one.

Finally, the performance of the proposed method was compared with the conventional
machine learning technique based on the Mahalanobis distance and the direct use of the
AR coefficients. For this purpose, the AR coefficients of all selected sensors regarding the
four deployment cases were collected to build the training and test matrices. The average
model orders of states HC1 and HC2 were used, and the Burg method in the time domain
was adopted to estimate the model coefficients. Figure 11 shows the relevant results, for
which each structural state (either healthy or damaged) is characterized by 20 distance
values. Figure 11a shows that the current states DC1–DC5 are accurately detected as
damaged conditions, while state HC3 is labeled as undamaged. This means that the
classical technique succeeds in detecting damage in the case of all measurements allowed
for, namely in the case of densely deployed sensor networks. Conversely, Figure 11b–d
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proves that the Mahalanobis distance technique with the AR coefficients fails in accurately
detecting damage in the case of limited sensor locations, due to numerous false positive
and false negative errors. This conclusion then confirms the superiority of the proposed
multi-level machine learning technique based on the AR spectrum, for damage detection in
the case of a limited number of sensors placed over the structure to be monitored.

Figure 10. Damage detection by the proposed multi-level machine learning method and PSD:
(a) Case 1, (b) Case 2, (c) Case 3, (d) Case 4.

Figure 11. Damage detection by the conventional MSD technique and the AR coefficients: (a) Case 1,
(b) Case 2, (c) Case 3, (d) Case 4.
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5. Conclusions

This paper aimed at dealing with challenges related to damage detection in the case of
partial structural observations due to a limited deployment of the sensor network, under en-
vironmental variability. A parametric spectral-based feature extraction approach based on
AR modeling was proposed to estimate the AR spectrum, which was proven to be a reliable
damage-sensitive feature even when only limited information on the structural state was
exploited. An innovative multi-level machine learning method was then proposed to set the
training and test data by the LSD (Level 1), to remove the potential environmental and/or
operational variations by an improved factor analysis termed MCMC-FA (Level 2), and to
detect early damage by the JS-divergence with the aid of the KDE (Level 3). Experimental
datasets relevant to the Wooden Bridge benchmark were exploited to assess the accuracy
and performance of the proposed method, and also in comparison with certain alternative
exiting approaches.

The results of the present analysis reveal that the AR spectrum, in cooperation with
the multi-level machine learning method, can bear a noteworthy potential use to detect
early damage in the case of limited sensor deployments and in the presence of environ-
mental effects. This approach was shown to outperform others based on the conventional
Mahalanobis distance and direct use of the AR coefficients. The AR spectrum proved to
be more effective and reliable than the PSD. It was observed that the proposed MCMC-FA
method enhances the performance of the proposed multi-level machine learning, efficiently
removing the effects of environmental variability. Moreover, this method was superior to
the classical factor analysis, when the size of the multivariate training dataset proves to
be small.

In future research activities, the proposed approach is to be extended to long-term
monitoring cases still featuring limited sensor locations and environmental variability, with
full-scale civil structures such as bridges subjected to ambient vibrations. The impact of the
adoption of limited wireless sensor nodes on the damage detection capability will also be
thoroughly evaluated. As unsupervised data-driven methods can be employed to locate
damage upon conditions of a dense sensor network with an optimal placement of sensors,
it appears necessary to investigate this problem in the case of limited sensor coverage.
Moreover, it is recommended to investigate the performance of the proposed method using
other types of vibration-induced signals, such as e.g., strains and acoustic emission.
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