Spectral theory on the S-spectrum was born out of the need to give quaternionic quantum mechanics a precise mathematical foundation (Birkhoff and von Neumann [8] showed that a general set theoretic formulation of quantum mechanics can be realized on real, complex or quaternionic Hilbert spaces). Then it turned out that spectral theory on S-spectrum has important applications in several fields such as fractional diffusion problems and, moreover, it allows one to define several functional calculi for n-tuples of noncommuting operators. With this paper we show that the spectral theory on the S-spectrum is much more general and it contains, just as particular cases, the complex, the quaternionic and the Clifford settings. In fact, the S-spectrum is well defined for objects in an algebra that has a complex structure and for operators in general Banach modules. We show that the abstract formulation of the S-functional calculus goes beyond quaternionic and Clifford analysis, indeed the S-functional calculus has a certain universality property. This fact makes the spectral theory on the S-spectrum applicable to several fields of operator theory and allows one to define functions of noncommuting matrix variables, and operator variables, as a particular case.

Universality property of the S-functional calculus, noncommuting matrix variables and Clifford operators

Colombo F.;Gantner J.;Kimsey D. P.;Sabadini I.
2022-01-01

Abstract

Spectral theory on the S-spectrum was born out of the need to give quaternionic quantum mechanics a precise mathematical foundation (Birkhoff and von Neumann [8] showed that a general set theoretic formulation of quantum mechanics can be realized on real, complex or quaternionic Hilbert spaces). Then it turned out that spectral theory on S-spectrum has important applications in several fields such as fractional diffusion problems and, moreover, it allows one to define several functional calculi for n-tuples of noncommuting operators. With this paper we show that the spectral theory on the S-spectrum is much more general and it contains, just as particular cases, the complex, the quaternionic and the Clifford settings. In fact, the S-spectrum is well defined for objects in an algebra that has a complex structure and for operators in general Banach modules. We show that the abstract formulation of the S-functional calculus goes beyond quaternionic and Clifford analysis, indeed the S-functional calculus has a certain universality property. This fact makes the spectral theory on the S-spectrum applicable to several fields of operator theory and allows one to define functions of noncommuting matrix variables, and operator variables, as a particular case.
2022
File in questo prodotto:
File Dimensione Formato  
11311-1224391_Colombo.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 319.2 kB
Formato Adobe PDF
319.2 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1224391
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 1
social impact