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UNIVERSALITY PROPERTY OF THE S-FUNCTIONAL CALCULUS,

NONCOMMUTING MATRIX VARIABLES AND CLIFFORD OPERATORS

FABRIZIO COLOMBO, JONATHAN GANTNER, DAVID P. KIMSEY, AND IRENE SABADINI

Abstract. Spectral theory on the S-spectrum was born out of the need to give quaternionic
quantum mechanics a precise mathematical foundation (Birkhoff and von Neumann [8] showed
that a general set theoretic formulation of quantum mechanics can be realized on real, complex or
quaternionic Hilbert spaces). Then it turned out that spectral theory on S-spectrum has important
applications in several fields such as fractional diffusion problems and, moreover, it allows one to
define several functional calculi for n-tuples of noncommuting operators. With this paper we show
that the spectral theory on the S-spectrum is much more general and it contains, just as particular
cases, the complex, the quaternionic and the Clifford settings. In fact, the S-spectrum is well defined
for objects in an algebra that has a complex structure and for operators in general Banach modules.
We show that the abstract formulation of the S-functional calculus goes beyond quaternionic and
Clifford analysis, indeed the S-functional calculus has a certain universality property. This fact
makes the spectral theory on the S-spectrum applicable to several fields of operator theory and
allows one to define functions of noncommuting matrix variables, and operator variables, as a
particular case.
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1. Introduction

An important issue in operator theory is to define functions of n-tuples of operators (T1, ..., Tn)
and in order to do this several different strategies have been developed. The spectral theorem for
n-tuples of commuting normal operators on a Hilbert space, see [47], and the Weyl functional calcu-
lus for self adjoint, not necessarily commuting operators, are among the most important tools. The
use of the Cauchy formulas of hyperholomorphic functions constitutes a powerful strategy to define
functions of quaternionic operators and also of n-tuples of operators (T1, ..., Tn) and these hyper-
holomorphic functional calculi have several applications in mathematics, physics and engineering.
In [44] one can find connections of the Weyl functional calculus and the Taylor functional calculus
(see [48]) with the monogenic functional calculus. Additional connections among the aforemen-
tioned spectral theories can be found in the survey paper [16]. The holomorphic functional calculus
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can be extended to unbounded operators and for sectorial operators the H∞-functional calculus,
introduced by A. McIntosh in [40], is a very important extension, see also [36].

There are two different extensions to higher dimensions of holomorphic functions of one complex
variable obtained by the Fueter-Sce-Qian theorem. These extensions give two different notions of
hyperholomorphic functions, see [27], connected with quaternionic-valued functions or more in gen-
eral with Clifford algebra-valued functions. The two extensions are called slice hyperholomorphic
functions and monogenic functions for the Clifford algebra setting. Both classes of hyperholomor-
phic functions have a Cauchy formula that can be used to define functions of n-tuples of operators
that do not necessarily commute.

Slice hyperholomorphic functions with values in a Clifford algebra are also called slice monogenic
functions. The main results of this function theory are contained in the book [25] and the references
therein. Monogenic functions, i.e., functions that are in the kernel of the Dirac operator, see
[9, 22, 35], are very well studied.

The two spectral theories induced by hyperholomorphic functions are the spectral theory based
on the S-spectrum and the monogenic spectral theory based on the monogenic spectrum. Precisely,
the Cauchy formula of slice hyperholomorphic functions generates the S-functional calculus for n-
tuples of not necessarily commuting operators, this calculus is based on the notion of S-spectrum.
On the other hand, the Cauchy formula, that monogenic functions generate, gives rise to the
monogenic functional calculus which is based on the monogenic spectrum.

When considering intrinsic functions, the S-functional calculus can be defined for one-sided
quaternionic Banach spaces, see [30]. In the paper [30] the author has also developed the theory
of spectral operators in quaternionic Banach spaces. The two hyperholomorphic functional calculi
coincide with the Riesz-Dunford functional calculus when they are applied to a single operator on
a real or complex Banach space.

It is a well known fact that in the complex setting the spectral theorem and the Riesz-Dunford
functional calculus are both based on the same notion of spectrum and this is due to the fact there
do not seem to be any other useful and meaningful notions of spectrum in this case. If we move
to the quaternionic setting we have two ways to generalize the eigenvalue problem, considering
left and right eigenvalues. In both cases these spectra are not suitable for both the quaternionic
holomorphic functional calculus and for the quaternionic spectral theorem. It was just in 2006
with the discovery of the S-spectrum and with the theory of slice hyperholomorphic functions over
the quaternions that the symmetry became clear. The S-functional calculus and the quaternionic
spectral theorem are both based on the notion of S-spectrum.

The spectral theorem based on the notion of S-spectrum for quaternionic bounded and un-
bounded normal operators has been proved in 2015 and published in the paper [2] that appeared in
2016. As in the complex case, the spectral theorem for unitary operators, see [4], can be deduced by
the quaternionic version of Herglotz’s theorem [3]. Perturbation of normal quaternionic operators
are studied in [10]. Beyond the spectral theorem there is the theory of the characteristic operator
functions that has been initiated in [7].

In the past there have been several attempts to generalize the spectral theory to a quaternionic
Hilbert space, see [49, 50], but without specifying the notion of quaternionic spectrum. The papers
contain some interesting results in quaternionic operators theory.

In 2020, the spectral theorem for Clifford normal operators based on the S-spectrum was proved
in [17], but with some surprise this theorem holds true when we consider full Clifford operators and
not only paravector operators.
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This fact has lead the authors to delve deeper into the S-functional calculus in order to restore
the lost symmetry. Indeed, it turns out that we can extend the S-functional calculus to full Clifford
operators and not only to paravector operators. This observation has important consequences also
on the function theory of slice monogenic functions because it opens the way to the definition of
slice monogenic functions of a Clifford variable, see [18].

The literature on hyperholomorphic function theories and related spectral theories is nowa-
days very large. For the function theory of slice hyperholomorphic functions, started with the
quaternionic case in [32], the main books are [26, 25, 29, 31], while for the spectral theory on the
S-spectrum we mention the books [7, 14, 15, 25]. The monogenic functional calculus can be found
in the book [44] and the references therein.

Let us explain the generality of the spectral theory on the S-spectrum. The point of view that we
adopt in this paper is to work with a nontrivial, real, unital algebra F which is finite-dimensional,
associative, and is equipped with an anti-involution and a norm.

Remark 1.1. The framework in which we work is rather general since the algebra F that we consider
here is not necessarily of dimension 2n, so it is not necessarily isomorphic to a Clifford algebra, but
the family of algebras that we consider does include the algebra of complex numbers, quaternions
and the Clifford algebras R0,n with n ≥ 1.

We denote by S the set of left imaginary units in F , i.e.,

S :=
{

s ∈ F : ss̄ ∈ R and s2 = −1F
}

,

where 1F denotes the unit in F , later on denoted by 1 for simplicity, and ·̄ is the anti-involution.
When S 6= ∅, we define the (left) weak cone of F :

WF :=
⋃

J∈S

CJ,

where CJ will be called complex plane associated with J ∈ S. For s ∈ WF , using the anti-involution,
we define the real numbers Re(s) := 1

2 (s+ s̄) and |s| :=
√
ss̄, see in the sequel for more details. Now

we consider a two-sided Banach module, denoted by Y, over F with norm ‖·‖Y . We denote by B(Y)
the Banach module of all bounded linear operators from Y into itself with the natural operator
norm and, mimicking the analogous definitions in [25], we give the definition of S-resolvent set and
of S-spectrum with greater generality than [25]. In [34] the authors considered these notions for
analysis of semigroups. Let A ∈ B(Y) and s ∈ WF , we set

Qs(A) := A2 − 2Re(s)A+ |s|2I,
where I is the identity operator in B(Y). We define the S-resolvent set ρS(A) of A as

ρS(A) := {s ∈ WF : Qs(A) is invertible in B(Y)}
and the S-spectrum σS(A) of A as

σS(A) := WF \ ρS(A).
Then we define the left S-resolvent operator as

S−1
L (s,A) = −Qs(A)

−1(A− s I), s ∈ ρS(A)

and the right S-resolvent operator as

S−1
R (s,A) = −(A− sI)Qs(A)

−1, s ∈ ρS(A),

The operator Qs(A)
−1, for s ∈ ρS(A), is called pseudo-resolvent operator. Once that we have

introduced the above concepts we can define the S-functional calculus with a great generality
in such a way that it contains as particular cases: the complex case, the quaternionic case and
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the case of paravector operators or full Clifford operators. So we denote by SHL(σS(A)), (resp.
SHR(σS(A))) for A ∈ B(Y), the set of all left, (resp. right) slice hyperholomorphic functions on
U , where U is a bounded Cauchy domain such that with σS(A) ⊂ U , U ⊂ dom(f) and dom(f)
is the domain of the function f . The abstract formulation of the S-functional calculus holds for
A ∈ B(Y). For any imaginary unit J ∈ S we set dsJ = ds(−J) and we define

f(A) :=
1

2π

∫

∂(U∩CJ)
S−1
L (s,A) dsJ f(s), for any f ∈ SHL(σS(A))

and

f(A) :=
1

2π

∫

∂(U∩CJ)
f(s) dsJ S

−1
R (s,A), for any f ∈ SHR(σS(A)).

Moreover, standard techniques in slice hypercomplex analysis, see [15, 25], show that both integrals
depend neither on U nor on the imaginary unit J ∈ S. The arbitrariness of the algebra F and of
the Banach module Y over F is called the universality property of the S-functional calculus.

The paper consists of six sections including the introduction. In section 2 we consider vector-
valued slice hyperholomorphic functions on the algebra F which are the hyperholomorphic functions
on which the S-functional calculus is based. In Section 3 we give the abstract formulation S-
functional calculus and in Section 4 we apply the abstract results to bounded full Clifford operators.
In Section 5 we show some properties of the S-functional calculus for bounded full Clifford operators
and finally in Section 6 we consider the particular case of noncommuting matrix variables which
can be of interest in free probability.

2. Vector-valued slice hyperholomorphic functions

In this section we define vector-valued slice hyperholomorphic functions with values in a module
over an associative algebra satisfying suitable conditions. In the sequel, we use the notion of
hyperholomorphicity to define the S-functional calculus for a large class of operators to which the
definition of S-spectrum can be extended and for which the S-resolvent operators preserve the slice
hyperholomorphicity.

Let F 6= {0} be a real, finite-dimensional, associative real algebra with unit, denoted by 1. The
multiples of the unit 1 will be identified with real numbers by α · 1 7→ α, α ∈ R. By fixing a basis

u1 = 1, u2, . . . , uN of F as a real linear space we can write a ∈ F as a =
∑N

ℓ=1 aℓuℓ, aℓ ∈ R. We
say that a1 is the so-called scalar part of a and, following the notation in use in the case of Clifford
algebras, we denote it by [a]0.
We assume that F is equipped with an anti-involution ·̄, i.e., ·̄ is an involution in F with the
property ab = b̄ā for all a, b ∈ F , that fixes R.
In the sequel, we need a notion of norm in F , so we assume that the algebra F satisfies the condition
[aā]0 ≥ 0, for a ∈ F , and the equality holds if and only if a = 0. Then we define

‖a‖ = ([aā]0)
1/2 (1)

and we assume that ‖ · ‖ defines a norm in F .

We denote by S the set of imaginary units in F , i.e.,

S :=
{

s ∈ F : ss̄ ∈ R and s2 = −1
}

. (2)

We shall assume that F is such that S 6= ∅.
If we denote by Ls : F → F the multiplication on the left by s ∈ F , our assumptions imply that
there exists s ∈ F such that Ls is a complex structure on F . So the algebra F is a LSCS algebra,
in the terminology of [28].
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Assumption 2.1. In the sequel F denotes a nontrivial, finite-dimensional, associative real algebra
with unit, nonempty S and equipped with an anti-involution ·̄ giving a norm ‖ · ‖ as in (1).

Following [28], we now give the following definition:

Definition 2.2. We define the (left) weak cone of F :

WF :=
⋃

J∈S

CJ, (3)

where CJ := {u+ Jv, u, v ∈ R} will be called complex plane associated with J ∈ S.

Example 2.3. In the case we consider F = H, we have WF = H. For a Clifford algebra F = Rn

the set of paravectors {s ∈ Rn : s = s0 + s1e1 + ... + snen} is contained in WF but WF can be
larger, see [33].

In [33] the authors define the notion of a quadratic cone in a real, finite-dimensional, alternative
algebra with unit 1 and equipped with an anti-involution. The imaginary units are a subset of this
cone which turns out to satisfy (3) for J ∈ S.

Remark 2.4. For any J ∈ S we have, by definition, J2 = −1 and so ‖J2‖ = 1. The definition of

norm implies ‖J2‖ = (JJ)(JJ) = J(JJ̄)J̄ = ‖J‖2 = 1 thus ‖J‖ = 1, i.e. JJ̄ = 1. Multiplying by J
both sides of this last equality we obtain −J̄ = J. We deduce that the anti-involution ·̄ induces the
standard conjugation on each complex plane CJ, namely J̄ = −J and

· : WF → WF ,

which is defined by s = u+ Jv 7→ s̄ = u− Jv, for u, v ∈ R. Moreover, for every s ∈ WF , note that:

s+ s̄ ∈ R, ss̄ = s̄s ∈ R,

and so we set

Re(s) :=
1

2
(s+ s̄), and |s| :=

√
ss̄

that we will call the real part and the modulus of s, respectively, in analogy with the complex case.
Observe also that |s| = ‖s‖.
Lemma 2.5. For any s ∈ WF we have the identity

s2 − 2sRe(s) + |s|21 = 0.

Proof. The proof is immediate, since any s ∈ WF satisfies

s2 − s(s+ s̄) + ss̄1 = 0.

�

Example 2.6. The algebra of quaternions satisfies Assumption 2.1. If we consider the elements
i, j such that i2 = j2 = −1, ij+ ji = 0, the set 1, i, j, ij is a basis of H as a real linear space and the
conjugation is ī = −i, j̄ = −j, ij = −ij. The norm is such that ‖a‖ = (aā)1/2. Moreover H = WF .
More generally, a Clifford algebra Rn := R0,n, n ≥ 1 satisfies Assumption 2.1, if we consider the
Clifford conjugation.
Finally we consider the real algebra BC of bicomplex numbers (which is not a real Clifford algebra).
It is a commutative algebra generated by two imaginary units i, j such that i2 = j2 = −1, ij = ji.
Simple computations show that S = {±i,±j} and WBC = Ci∪Cj. The conjugation ī = −i, j̄ = −j

extends to the whole algebra and ab = b̄ā. Writing a = x+ yi+ zj+ tk, where k = ij = k̄, we have
that ‖a‖ = (x2 + y2 + z2 + t2)1/2, defined according to (1), is the Euclidean norm.
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Definition 2.7. Let x = u+ Jxv ∈ WF , for u, v ∈ R. We define the set

[x] := {y ∈ WF : y = u+ Jv, J ∈ S},
which will be called the sphere associated with x. We say that U ⊆ WF is axially symmetric if
[x] ∈ U for any x ∈ U .

Since we need to consider functions defined on subsets of the weak cone WF , our next goal is to
define a topology on it and to this end we shall follow [28].

Definition 2.8. The slice topology τs(WF ) on WF is defined by

τs(WF ) = {U ⊂ WF : U ∩ CJ is open in CJ,∀J ∈ S}.
The weak cone can be equipped with the slice topology, see [28]. Among the open sets in WF ,

i.e. sets in τs(WF ), there are the axially symmetric open sets. These sets are of the form

U = {x ∈ WF : x = u+ Jv, (u, v) ∈ U , J ∈ S}, (4)

where U ⊆ R
2 is an open set in R

2. In the sequel, we shall consider only open sets which are axially
symmetric, namely axially symmetric sets generated by open sets U in R

2.
Our next goal is to define vector-valued slice hyperholomorphic functions with values in a left

(or right, or two-sided) Banach module over F . We start by considering a special case in which the
Banach module X is constructed starting from a Banach space X over R equipped with a norm
‖ · ‖X via the the algebraic tensor product X ⊗R F of X with F . The elements in X = X ⊗R F
are finite linear combinations of the form

∑

vi ⊗ ui, vi ∈ X, where {u1 = 1, . . . , uN} is basis of F .
The left multiplication with a ∈ F is defined as

∑

vi ⊗ (aui) while the right multiplication by a is
defined by

∑

vi ⊗ (uia). For simplicity, the symbol ⊗ will be omitted. The norm of
∑

vi ⊗ ui in

X ⊗R F is taken equal to (
∑ ‖vi‖2X)1/2.

We say that X = X ⊗R F is a left (or right, or two-sided) module over F if there exist a left (or
right, or two-sided) multiplication by elements of F and a constant C ≥ 1 such that for all x ∈ X ,
a ∈ F this inequality holds:

‖ax‖X ≤ C‖a‖F‖x‖X (or ‖xa‖X ≤ C‖x‖X ‖a‖F , or both).

This case is useful when dealing with n-tuples of real linear operators.

More in general, we can consider a right (or left, or two-sided) module Y over F .
We say that Y is a right (or left, or two-sided) Banach module over F if there exists a constant

C ≥ 1 such that

‖ys‖Y ≤ C‖y‖Y‖s‖F (or ‖sy‖Y ≤ C‖y‖Y‖s‖F , or both) for all y ∈ Y, s ∈ F ,

and if Y is complete.
For our purposes we will choose the norms in such a way that C = 1.

Since we assumed S 6= ∅, let J1, . . . , Jr be a maximal set of linearly independent elements in S

and let us consider a basis {uℓ} of F such that uℓ = Jℓ, ℓ = 1, . . . , r, with r ≤ N .
We are now in s position to give the definition of vector-valued slice hyperholomorphic functions

in this more general case which resembles the case of a quaternionic or a paravector variable. The
proofs of the main results mimic those cases closely. We refer the reader to Section 2.3 in the book
[15] for details.

Definition 2.9 (Vector-valued slice hyperholomorphic functions). Let F be an algebra satisfying
Assumption 2.1 and denote by WF its weak cone. Let U ⊆ WF be an axially symmetric open set
as in (4) where U is open in R

2.
(I) If XL is a left Banach module over F . A function f : U → XL is called a left-slice function,

if it is of the form
f(x) = f0(u, v) + Jf1(u, v) for x = u+ Jv ∈ U
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with two functions f0, f1 : U → XL that satisfy the compatibility conditions

f0(u,−v) = f0(u, v), f1(u,−v) = −f1(u, v). (5)

If in addition f0 and f1 are of class C1 and satisfy the Cauchy-Riemann equations

∂

∂u
f0(u, v) −

∂

∂v
f1(u, v) = 0

∂

∂v
f0(u, v) +

∂

∂u
f1(u, v) = 0,

(6)

then f is called left slice hyperholomorphic.
(II) If XR is a right Banach module over F . Then a function f : U → XR is called a right-slice

function if it is of the form

f(x) = f0(u, v) + f1(u, v)J for x = u+ Jv ∈ U

with two functions f0, f1 : U → XR that satisfy (5). If in addition f0 and f1 are of class C1 and
satisfy the Cauchy-Riemann equations (6), then f is called right slice hyperholomorphic.

(III) If f is a left (or right) slice function such that f0 and f1 are real-valued, then f is called
intrinsic.

(IV) We denote the sets of left, right and intrinsic slice hyperholomorphic functions on U by
SHL(U), SHR(U)and N (U), respectively.

Theorem 2.10 (The Structure Formula or Representation Formula). Let F be an algebra satisfying
Assumption 2.1 and denote by WF its weak cone. Let U ⊆ WF be an axially symmetric open set.

(I) Let XL be a left Banach module over F and let f : U → XL be such that f ∈ SHL(U). Then,
for any vector x = u+ Jxv ∈ U , the following formula holds:

f(x) =
1

2

[

1− JJx

]

f(u+ Jv) +
1

2

[

1 + JJx

]

f(u− Jv), for all J ∈ S. (7)

(II) Let XR be a right Banach module over F and let f : U → XR be such that f ∈ SHR(U).
Then, for any vector x = u+ Jxv ∈ U , the following formula holds:

f(x) =
1

2
f(u+ Jv)

[

1− JJx

]

+
1

2
f(u− Jv)

[

1 + JJx

]

, for all J ∈ S. (8)

Proof. It is a direct consequence of the definition and a suitable adaptation of the proof of Propo-
sition 2.1.19 in [15]. �

In the sequel, the symbol S−1
L (s, x) denotes the Cauchy kernel for left slice hyperholomorphic

functions and S−1
R (s, x) denotes the one for right slice hyperholomorphic functions.

Definition 2.11. Let F be an algebra as in Assumption 2.1 and denote by WF its weak cone. Let
x, s ∈ WF with x 6∈ [s] and define:

S−1
L (s, x) := −(x2 − 2Re(s)x+ |s|2)−1(x− s) (9)

= (s− x̄)(s2 − 2Re(x)s+ |x|2)−1, (10)

S−1
R (s, x) := −(x− s̄)(x2 − 2Re(s)x+ |s|2)−1 (11)

= (s2 − 2Re(x)s + |x|2)−1(s− x̄). (12)

The next lemma follows as in one quaternionic or Clifford algebra case, see [15].

Lemma 2.12. Let x, s ∈ WF with s /∈ [x]. The left slice hyperholomorphic Cauchy kernel S−1
L (s, x)

is left slice hyperholomorphic in x and right slice hyperholomorphic in s. The right slice hyperholo-
morphic Cauchy kernel S−1

R (s, x) is left slice hyperholomorphic is s and right slice hyperholomorphic
in x.

7



Definition 2.13 (Slice Cauchy domain). An axially symmetric open set U ⊆ WF is called a slice
Cauchy domain, if U ∩ CJ is a Cauchy domain in CJ for any J ∈ S. More precisely, U is a slice
Cauchy domain if, for any J ∈ S, the boundary ∂(U ∩ CJ) of U ∩ CJ is the union a finite number
of non-intersecting piecewise continuously differentiable Jordan curves in CJ.

Theorem 2.14 (The Cauchy formula). Let F be an algebra as in Assumption 2.1 and denote by
WF its weak cone. Let U ⊆ WF be an axially symmetric, bounded slice Cauchy domain. For any
J ∈ S we set dsJ = ds(−J). Then we have:

(I) If XL is a left Banach module over F and let f : U → XL be a left slice hyperholomorphic
function on an open set that contains U . Then, for every x ∈ U , we have

f(x) =
1

2π

∫

∂(U∩CJ)
S−1
L (s, x) dsJ f(s), for any f ∈ SHL(U). (13)

(II) If XR is a right Banach module over F and let f : U → XR be a right slice hyperholomorphic
function on an open set that contains U . Then, for every x ∈ U , we have

f(x) =
1

2π

∫

∂(U∩CJ)
f(s) dsJ S

−1
R (s, x), for any f ∈ SHR(U). (14)

Moreover, the integrals (13) and (14) depend neither on U nor on the imaginary unit J ∈ S.

Proof. We consider the case of functions with values in XL since the other case is similar. Let us
write the function f : U ⊆ WF → XL as

f(x) = f(u+ Jv) = f0(u, v) + Jf1(u, v)

=

N
∑

i=1

(ϕ0i(u, v) + Jϕ1i(u, v))ui

where, for ℓ = 0, 1, fi(u+Jv) = ϕ0i(u, v))+Jϕ1i(u, v) is XL-valued. The Cauchy formula, computed
on the complex plane CJ is then valid for any fi, being a function XL-valued of the complex variable
u + Jv and so it is valid for f(u + Jv). To get f(u + Iv) we now use the Representation formula
and, finally, we use arguments as in the proof of Theorem 2.3.19 in [15] to show the independence
of the complex plane. �

Similarly we have:

Theorem 2.15 (Cauchy formulas on unbounded slice Cauchy domains). Let F be an algebra
satisfying Assumption 2.1 and denote by WF its weak cone. Let U ⊆ WF be an unbounded slice
Cauchy domain. For any J ∈ S we set dsJ = ds(−J).

(I) If XL is a left Banach module over F and let f : U → XL be a left slice hyperholomorphic
function on an open set that contains U . If f(∞) := lim|x|→∞ f(x) exists, then, for every x ∈ U
we have

f(x) = f(∞) +
1

2π

∫

∂(U∩CJ)
S−1
L (s, x) dsJ f(s) for any f ∈ SHL(U).

(II) If XR is a right Banach module over F and let f : U → XR be a right slice hyperholomorphic
function on an open set that contains U . If f(∞) := lim|x|→∞ f(x) exists, then, for every x ∈ U
we have

f(x) = f(∞) +
1

2π

∫

∂(U∩CJ)
f(s) dsJ S

−1
R (s, x) for any f ∈ SHR(U).

Remark 2.16. From now on we will consider slice hyperholomorphic functions with values in a
two-sided Banach module X over F .
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Remark 2.17. With the assumption that the Banach module XL or XR is two-sided the sets SHL(U),
SHR(U) become right and left modules over F , respectively.

3. The abstract formulation of the S-functional calculus

The S-functional calculus was originally defined for quaternionic operators and for paravector
operators, i.e., operators of the form T = T0 +

∑n
j=1 ejTj where Tj for j = 0, 1, . . . , n are linear

operators on a real Banach space and {ej}nj=1 are the units of the Clifford algebra Rn := R0,n.
The crucial fact in both cases is the notion of slice hyperholomorphic functions defined on quater-

nionic numbers or on paravector numbers.
With the definition of slice hyperholomorphic functions on a more general algebra (satisfying

Assumption 2.1) and observing that the definition of S-spectrum is not restricted to quaternionic
operators or to paravector operators we give, after some preliminary results, the definition of the
S-functional calculus in its full generality.

Definition 3.1. Let Y be a two-sided Banach module over F with norm ‖ · ‖Y . We denote by
B(Y) the left- or right-Banach module over F of all bounded right- or left-linear operators from Y
into itself with the supremum norm

‖A‖B(Y) := sup
‖v‖Y=1

‖Av‖Y .

When no confusion can arise we will write ‖ · ‖ instead of ‖ · ‖Y (or of ‖ · ‖B(Y)).

Remark 3.2. In this section we let F be an algebra satisfying Assumption 2.1 and WF its weak
cone.

Remark 3.3. In the sequel we shall assume that B(Y) is equipped with a product of operators, with
unit I, and compatible with the two-sided module structure. We shall say that B(Y) is a two-sided
Banach algebra over F .

Definition 3.4. Let Y be a two-sided Banach module over F and let A ∈ B(Y) and s ∈ WF . We
call the series

+∞
∑

n=0

Ans−n−1 and
+∞
∑

n=0

s−n−1An

the left and the right S-resolvent operator series, respectively.

Lemma 3.5. Let A ∈ B(Y) and s ∈ WF . For ‖A‖ < |s| the left and right S-resolvent operator
series converge in the operator norm.

Proof. For the left S-resolvent operator series we have

+∞
∑

n=0

∥

∥Ans−n−1
∥

∥ ≤ |s|−1
+∞
∑

n=0

(

‖A‖|s|−1
)n

and the statement follows. We reason similarly for the right S-resolvent operator series.
�

Theorem 3.6. Let A ∈ B(Y) and s ∈ WF with ‖A‖ < |s|. Then

(

A2 − 2Re(s)A+ |s|2I
)−1

=

+∞
∑

n=0

An
n
∑

k=0

s̄−k−1s−n+k−1, (15)

where this series converges in the operator norm.
9



Proof. The proof is similar to that one of operators in paravector form, so we just draw the main
lines. We let

an :=
n
∑

k=0

s̄−k−1s−n+k−1, s ∈ WF

be the coefficients of the operator series (15) and observe that they satisfy the estimate

|an| ≤
n
∑

k=0

|s̄|−k−1|s|−n+k−1 = (n+ 1)|s|−n−2

and so
+∞
∑

n=0

‖Anan‖ ≤
+∞
∑

n=0

‖A‖n|s|−n−2(n+ 1).

Since ‖A‖ < |s|, the ratio test implies the convergence of this series and hence the series at the
right hand side of (15) converges in the operator norm. Moreover, we have

(A2 − 2Re(s)A+ |s|2I)
+∞
∑

n=0

Anan =
+∞
∑

n=2

Anan−2 −
+∞
∑

n=1

Anan−12Re(s) +
+∞
∑

n=0

Anan|s|2

=
+∞
∑

n=2

An(an−2 − an−12Re(s) + an|s|2)

+A(a02Re(s) + a1|s|2) + Ia0|s|2.
For n ≥ 2, we have, thanks to the equalities 2Re(s) = s+ s and |s|2 = ss = ss, that

an−2 − an−12Re(s) + an|s|2 =

=

n−2
∑

k=0

s−k−1s−n+1+k −
n−1
∑

k=0

s−k−12Re(s)s−n+k +

n
∑

k=0

s−k−1|s|2s−n+k−1

=
n−1
∑

k=1

s−ks−n+k −
n−1
∑

k=0

s−ks−n+k −
n−1
∑

k=0

s−k−1s−n+k+1 +
n
∑

k=0

s−ks−n+k

=− s−n + s−n = 0.

Since s−1 = |s|−2s and s−1 = |s|−2s, we also have that

a02Re(s)− a1|s|2 = |s|−2(s+ s)−
(

s−1s−2 + s−2s−1
)

|s|2

= s−1 + s−1 − |s|−2
(

s−1 + s−1
)

|s|2 = 0

and so

(A2 − 2Re(s)A+ |s|2I)
+∞
∑

n=0

Anan = I.

Note that the coefficients an satisfy an = an, so they are real and hence commute with A. We also
observe that

+∞
∑

n=0

Anan(A
2 − 2Re(s)A+ |s|2I) = (A2 − 2Re(s)A+ |s|2I)

+∞
∑

n=0

Anan = I

and so (15) holds.
�
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Theorem 3.7. Let A ∈ B(Y) and s ∈ WF with ‖A‖ < |s|.
(I) The left S-resolvent series equals

+∞
∑

n=0

Ans−n−1 = −(A2 − 2Re(s)A+ |s|2I)−1(A− sI).

(II) The right S-resolvent series equals

+∞
∑

n=0

s−n−1An = −(A− sI)(A2 − 2Re(s)A+ |s|2I)−1.

Proof. We just prove (I) as the other case (II) can be shown with a similar argument. The result
follows from the equality

s I −A = (A2 − 2Re(s)A+ |s|2I)
+∞
∑

n=0

Ans−1−n. (16)

As A2 − 2Re(s)A + |s|2I is invertible by Theorem 3.6, (16) is equivalent to (I). Since s ∈ WF we
have that 2Re(s) = s + s and |s|2 = s s = s s are real and so they commute with the operator A.
Thus

(A2 − 2Re(s)A+ |s|2I)
+∞
∑

n=0

Ans−n−1

=

+∞
∑

n=0

An+2s−n−1 −
+∞
∑

n=0

An+1s−n−1(s+ s) +

+∞
∑

n=0

Ans−n−1ss

=

+∞
∑

n=1

An+1s−n −
+∞
∑

n=0

An+1s−n −
+∞
∑

n=0

An+1s−n−1s+

+∞
∑

n=0

Ans−ns

=s I −A.

�

The previous result motivates the following definition of the S-spectrum in WF for operators
A ∈ B(Y) (cfr. [34]).
Definition 3.8. Let A ∈ B(Y) and s ∈ WF , we set

Qs(A) := A2 − 2Re(s)A+ |s|2I.
We define the S-resolvent set ρS(A) of A as

ρS(A) := {s ∈ WF : Qs(A) is invertible in B(Y)}
and we define the S-spectrum σS(A) of A as

σS(A) := WF \ ρS(A).
For s ∈ ρS(A), the operator Qs(A)

−1 ∈ B(Y) is called its pseudo-resolvent operator of A at s.

Remark 3.9. For A ∈ B(Y) an equivalent definition of the S-spectrum is

σS(A) := {s ∈ WF : Qs(A) is not invertible in B(Y)}
and the S-resolvent set ρS(A) is defined as

ρS(A) := WF \ σS(A).
Definition 3.8 of the S-resolvent set and of the S-spectrum is more useful for unbounded operators.
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As the following result shows, also in this more general case the S-spectrum is axially symmetric
and so it is compatible with the structure of slice hyperholomorphic functions.

Proposition 3.10. Let A ∈ B(Y). The sets ρS(A) and σS(A) are axially symmetric in WF .

Proof. If s = u+ Jv ∈ WF and s̃ = u+ Iv is any other element in [s], then

Qs̃(A) = A2 − 2uA+ (u2 + v2)I = Qs(A).

It is clear that Qs̃(A) is invertible if and only if Qs(A) is invertible and so s ∈ ρS(A) if and only if
s̃ ∈ ρS(A). Therefore ρS(A) and σS(A) are axially symmetric. �

Definition 3.11 (S-resolvent operators). Let A ∈ B(Y). For s ∈ ρS(A), we define the left S-
resolvent operator as

S−1
L (s,A) = −Qs(A)

−1(A− sI),
and the right S-resolvent operator as

S−1
R (s,A) = −(A− sI)Qs(A)

−1.

Lemma 3.12. Let A ∈ B(Y).
(I) The left S-resolvent S−1

L (s,A) is a B(Y)-valued right-slice hyperholomorphic function of the
variable s on ρS(A).

(II) The right S-resolvent S−1
R (s,A) is a B(Y)-valued left-slice hyperholomorphic function of the

variable s on ρS(A).

Proof. We prove only (I), since the proof of (II) is similar. Let s = u+ Jv ∈ ρS(A), then

S−1
L (s,A) = f0(u, v) + f1(u, v)J

with the B(Y)-valued functions

f0(u, v) = −(A2 − 2uA+ (u2 + v2)I)−1(A− uI),
f1(u, v) = −(A2 − 2uA+ (u2 + v2)I)−1v.

The functions f0 and f1 satisfy the compatibility condition (5), the function S−1
L (s,A) is a B(Y)-

valued right slice function on ρS(A). We verify that the pair (f0, f1) satisfies the Cauchy-Riemann
equations (6). We have:

∂

∂u
(−Qs(A)

−1(A− uI)) = (Qs(A)
−2(−2A+ 2uI)(A− uI)) +Qs(A)

−1

= Qs(A)
−2[−2(A2 − 2uA+ u2I) +A2 − 2uA+ (u2 + v2)I]

= Qs(A)
−2(−A2 + 2uA+ (−u2 + v2)I),

∂

∂v
(−Qs(A)

−1v) = Qs(A)
−2(2v2)−Qs(A)

−1

= Qs(A)
−2(−A2 + 2uA+ (−u2 + v2)I)

∂

∂v
(−Qs(A)

−1(A− uI)) = Qs(A)
−2(2vI)(A− uI)

∂

∂u
(−Qs(A)

−1v) = Qs(A)
−2(−2A+ 2uI)v

and the statement immediately follows. �

The following result on the invertibility of operators follows with standard arguments, so we
provide a reference for the proof.
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Lemma 3.13. The set Inv(B(Y)) of invertible elements in B(Y) is an open set in the uniform
operator topology on B(Y). If Inv(B(Y)) contains an element A, then it contains the ball

Bδ(A) := {C ∈ B(Y) : ‖A− C‖ < δ} ,
where δ =

∥

∥A−1
∥

∥

−1
. If C ∈ B(A), then inverse is given by the series

C−1 = A−1
+∞
∑

m=0

[(A− C)A−1]m. (17)

Furthermore, the map A 7→ A−1 is a homeomorphism from Inv(B(Y)) onto Inv(B(Y)) in the
uniform operator topology.

Proof. See Lemma 3.1.12 in [15]. �

The S-spectrum in WF has the standard properties of the spectrum of a complex linear operator
in particular, it is compact:

Theorem 3.14 (Compactness of the S-spectrum). Let A ∈ B(Y). The S-spectrum σS(A) of A is

a nonempty and compact set contained in the closed ball B‖A‖(0) with center at 0 and radius ‖A‖.

Proof. For r such that r > ‖A‖, the series S−1
L (s,A) =

∑+∞
m=0 A

ms−m−1 converges uniformly on
the boundary ∂Br(0) of the ball Br(0) centered at 0 with radius r. Thus, if J ∈ S, we have

∫

∂(Br(0)∩CJ)
S−1
L (s,A) dsJ =

+∞
∑

m=0

Am

∫

∂(Br(0)∩CJ)
s−m−1 dsJ = 2π I, (18)

since the integral
∫

∂(Br(0)∩CJ)
s−m−1dsJ = 2π if m = 0 while it vanishes for m ∈ N. If we assume, by

absurd, that Br(0) ⊆ ρS(T ), then S−1
L (s,A) is right slice hyperholomorphic on Br(0) by Lemma 3.12

and by Cauchy’s integral theorem the integral in (18) vanishes, which is a contradiction. Thus

Br(0) 6⊂ ρS(A) and so ∅ 6= σS(A) ∩Br(0) and σS(A) is not empty.
The set B(Y) can be considered as a real Banach algebra, by restricting the multiplication by a

scalar to R. The set Inv(B(Y)) of invertible elements of this real Banach algebra is open by Lemma
3.13. The map

τ : s 7→ Qs(A)

is a B(Y)-valued continuous function so that the set

ρS(A) = τ−1(Inv(B(Y)))
is open in WF . We conclude that σS(A) is closed.

Finally, Lemma 3.6 implies |s| ≤ ‖A‖ for any s ∈ σS(A). Thus, σS(A) is a closed subset of the

compact set B‖A‖(0) and therefore compact itself.
�

Each of the two S-resolvents satisfy a suitable equation as shown in the next result.

Theorem 3.15. Let A ∈ B(Y) and let s ∈ ρS(A). The left S-resolvent operator satisfies the left
S-resolvent equation

S−1
L (s,A)s −AS−1

L (s,A) = I (19)

and the right S-resolvent operator satisfies the right S-resolvent equation

sS−1
R (s,A) − S−1

R (s,A)A = I. (20)

Proof. It is a simple computation, as in the case of paravector operators. �
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The left and the right S-resolvent equations cannot be considered the generalizations of the
classical resolvent equation. The S-resolvent equation involves both the S-resolvent operators and
the Cauchy kernels.

Theorem 3.16 (The S-resolvent equation). Let A ∈ B(Y) and let s, q ∈ ρS(A) with q /∈ [s]. Then
the equation

S−1
R (s,A)S−1

L (q,A) =
[(

S−1
R (s,A)− S−1

L (q,A)
)

q − s
(

S−1
R (s,A)− S−1

L (q,A)
)]

Qs(q)
−1 (21)

holds true. Equivalently, it can also be written as

S−1
R (s,A)S−1

L (q,A) = Qq(s)
−1
[(

S−1
L (q,A)− S−1

R (s,A)
)

q − s
(

S−1
L (q,A)− S−1

R (s,A)
)]

, (22)

where we have set Qs(q)
−1 := (q2 − 2Re(s)q + |s|2)−1.

Proof. The proof follows in much the same manner as the proof in the case of quaternionic or
paravector operators. Indeed, with some manipulations, using the left and the right S-resolvent
(19), we get

S−1
R (s,A)S−1

L (q,A)(q2 − 2s0q + |s|2) =(s2 − 2s0s+ |s|2)S−1
R (s,A)S−1

L (q,A)

+ [S−1
R (s,A)− S−1

L (q,A)]q − s[S−1
R (s,A)− S−1

L (q,A)]

and since s2− 2s0s+ |s|2 = 0, thanks to Lemma 2.5 we obtain (21). With similar computations we
can show that also (22) holds. For more details see the proof of Theorem 3.1.15 in [15]. �

We now define the S-functional calculus starting with the case of polynomials of A.

Lemma 3.17. Let A ∈ B(Y), let m ∈ N ∪ {0} and let U ⊆ WF be a bounded slice Cauchy domain
with σS(A) ⊂ U . For any imaginary unit J ∈ S we set dsJ = ds(−J). Then we have

Am =
1

2π

∫

∂(U∩CJ)
S−1
L (s,A) dsJ s

m

and also

Am =
1

2π

∫

∂(U∩CJ)
sm dsJ S

−1
R (s,A).

Proof. In the case U is the ball Br(0) in WF with center at 0 and radius r > ‖A‖, then S−1
L (s,A) =

∑+∞
n=0A

ns−n−1 for any s ∈ ∂Br(0) by Theorem 3.7 and the series converges uniformly on ∂Br(0).
So we conclude that

1

2π

∫

∂(Br(0)∩CJ)
S−1
L (s,A) dsJ s

m = Am.

In the case when U is an arbitrary bounded slice Cauchy domain containing σS(A), there exists
r > 0 such that the ball Br(0) contains U . The left S-resolvent S−1

L (s,A) is then right slice
hyperholomorphic and the monomial sm is left slice hyperholomorphic on the bounded slice Cauchy
domain Br(0) \ U . Cauchy’s integral theorem implies

1

2π

∫

∂(Br(0)∩CJ)
S−1
L (s,A) dsJ s

m − 1

2π

∫

∂(U∩CJ)
S−1
L (s,A) dsJ s

m

=
1

2π

∫

∂((Br(0)\U)∩CJ)
S−1
L (s,A) dsJ s

m = 0

and so
1

2π

∫

∂(U∩CJ)
S−1
L (s,A) dsJ s

m =
1

2π

∫

∂(Br(0)∩CJ)
S−1
L (s,A) dsJ s

m = Am.
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The second formula in the statement, involving S−1
R (s,A) follows similarly.

�

Theorem 3.18. Let A ∈ B(Y), let U be a bounded slice Cauchy domain that contains σS(A) and

let J ∈ S. For any left slice hyperholomorphic polynomial P (x) =
∑M

ℓ=0 x
ℓaℓ with aℓ ∈ F , we set

P (A) =
∑M

ℓ=0A
ℓaℓ. Then

P (A) =
1

2π

∫

∂(U∩CJ)
S−1
L (s,A) dsJ P (s). (23)

Similarly, we set P (A) =
∑M

ℓ=0 aℓA
ℓ for any right slice hyperholomorphic polynomial P (x) =

∑M
ℓ=0 aℓx

ℓ with aℓ ∈ F . Then

P (A) =
1

2π

∫

∂(U∩CJ)
P (s) dsJ S

−1
R (s,A). (24)

In particular, the operators in (23) and (24) coincide for any intrinsic polynomial P (x) =
∑M

ℓ=0 x
ℓaℓ,

i.e., when the coefficients aℓ ∈ R.

Proof. It is a direct consequence of Lemma 3.17. �

The S-functional calculus is based, more in general, on functions that are slice hyperholomorphic
on the S-spectrum of an operator A. To define the calculus in its full generality we need some more
notations.

Definition 3.19. Let A ∈ B(Y). We denote by SHL(σS(A)), SHR(σS(A)) and N (σS(A)), the set
of all left, right and intrinsic slice hyperholomorphic functions with σS(A) ⊂ dom(f) and dom(f)
is the domain of the function f .

Definition 3.20 (The abstract formulation S-functional calculus). Let A ∈ B(Y). For any imagi-
nary unit J ∈ S we set dsJ = ds(−J) and we define

f(A) :=
1

2π

∫

∂(U∩CJ)
S−1
L (s,A) dsJ f(s), for any f ∈ SHL(σS(A)), (25)

and

f(A) :=
1

2π

∫

∂(U∩CJ)
f(s) dsJ S

−1
R (s,A), for any f ∈ SHR(σS(A)), (26)

where U ⊂ WF is a bounded Cauchy domain such that σS(A) ⊂ U and U ⊂ dom(f).

Definition 3.21 (Universality property). The universality property of the S-functional calculus is
the formulation of the S-functional calculus with respect to the algebra of operators B(Y) and for
slice hyperholomorphic functions associated with an algebra satisfying Assumption 2.1.

The abstract formulation of the S-functional calculus is well-defined because the integrals (25)
and (26) do not depend on the open set U that contain the S-spectrum and on J ∈ S.

Theorem 3.22. Let A ∈ B(Y). For any f ∈ SHL(σS(A)), the integral in (25) defining the operator
f(A) is independent of the choice of the slice Cauchy domain U and of the imaginary unit J ∈ S.
Similarly, for any f ∈ SHR(σS(A)), the integral in (26) that defines the operator f(A) is also
independent of the choice of U and J ∈ S.

Proof. We follow the proof in the quaternionic case, and we first show the independence of the
definition of the choice of the slice Cauchy domain U . So we choose another bounded slice Cauchy
domain U ′ ⊂ WF containing σS(A) and such that its closure is contained in the domain of f ∈
SHL(σS(A)). If U ′ 6⊂ U , then O := U ∩ U ′ is an axially symmetric open set, O ⊃ σS(A). We can
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hence find another slice Cauchy domain U ′′ with σS(A) ⊂ U ′′ and U ′′ ⊂ O = U ∩U ′. The integrals
over the boundaries of all three sets U,U ′, U ′′ agree because f is slice hyperholomorphic. On the
other hand, if U ′ ⊂ U we set O = U \ U ′ and we observe that O is a bounded Cauchy domain
whose closure is contained in ρS(T ). Thus the integral (25) computed over ∂(O ∩ CJ) vanishes,
which implies

1

2π

∫

∂(U∩CJ)
S−1
L (s,A) dsJ f(s)−

1

2π

∫

∂(U ′∩CJ)
S−1
L (s,A) dsJ f(s) = 0

and the assertion follows also in this case.
We now show the independence of the imaginary unit: let I, J ∈ S and let Uq, Us ⊂ dom(f) with

σS(A) ⊂ Uq be two slice Cauchy domains and assume Uq ⊂ Us. (The subscripts q and s denote
the respective variable of integration in the following computation). The set U c

q := WF \ Uq is an

unbounded axially symmetric slice Cauchy domain with U c
q ⊂ ρS(A). The S-resolvent S−1

L (s,A)
is right slice hyperholomorphic on ρS(A) and also at infinity so the right slice hyperholomorphic
Cauchy formula implies

S−1
L (s,A) =

1

2π

∫

∂(Uc
q∩CI)

S−1
L (q,A) dqI S

−1
R (q, s)

for any s ∈ Us. Since ∂(U c
q ∩ CJ) = −∂(Uq ∩ CJ) and S−1

R (q, s) = −S−1
L (s, q), we get

f(A) =
1

2π

∫

∂(Us∩CJ)
S−1
L (s,A) dsJ f(s)

=
1

(2π)2

∫

∂(Us∩CJ)

(

∫

∂(Uc
q∩CI)

S−1
L (q,A) dqI S

−1
R (q, s)

)

dsJ f(s)

=
1

(2π)2

∫

∂(Uq∩CI)
S−1
L (q,A) dqI

(

∫

∂(Us∩CJ)
S−1
L (s, q) dsJ f(s)

)

=
1

2π

∫

∂(Uq∩CI)
S−1
L (q,A) dqIf(q),

and the statement follows. �

We note that if f ∈ N (σS(A)) then formulas (25) and (26) give the same operator. This can be
shown as for paravector operators by uniform approximation of f with intrinsic rational functions.
This result and the fact that the S-functional calculus is consistent with the limits of uniformly
convergent sequences of slice hyperholomorphic functions can be shown as in the case of paravector
operators.

Theorem 3.23. Let A ∈ B(Y). If f ∈ N (σS(A)), then both versions of S-functional calculus give
the same operator f(A), i.e., we have

f(A) =
1

2π

∫

∂(U∩CJ)
S−1
L (s,A) dsJ f(s) =

1

2π

∫

∂(U∩CJ)
f(s) dsJ S

−1
R (s,A).

Proof. It is easy to check that the proof follows from Runge’s theorem (see Theorem 2.1.37 in [15])
adapted to this general setting and it follows the same lines as when A is a paravector operator.

�
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4. An application to bounded full Clifford operators

As we mentioned the S-functional calculus was introduced for quaternionic operators and for
(n + 1)-tuples (T0, ..., Tn) of linear operators written in paravector form as T = T0 +

∑n
j=1 ejTj .

The universality property of the S-functional calculus highlights the great generality of this calculus
and here we show how it can be applied not only to paravector operators with noncommuting
components but also to full Clifford operators with noncommuting components. Such operators
contain as a particular case paravector operators. The main references in which the formulations
and the properties of S-functional calculus for quaternionic operators and for paravector operators
are [1, 23].

Remark 4.1. The great adaptability of the S-functional calculus to several settings, formalized in
terms of its universality property, is not shared by other functional calculi based on different Cauchy
formulas, but it is a consequence of the Cauchy formula with slice hyperholomorphic Cauchy kernels.
This fact has several advantages not only in operator theory but also for the function theory.

To give an application of the S-functional calculus to full Clifford operators we need slice hyper-
holomorphic functions with values in a Clifford algebra (slice monogenic functions). Let Rn be the
real Clifford algebra over n imaginary units e1, . . . , en satisfying the relations eℓem+emeℓ = 0, ℓ 6= m,
e2ℓ = −1. An element in the Clifford algebra will be denoted by

∑

A eAxA where A = (ℓ1 . . . ℓr),
ℓi ∈ {1, 2, . . . , n}, ℓ1 < . . . < ℓr is a multi-index and eA = eℓ1eℓ2 . . . eℓr , e∅ = 1. An element
(x0, x1, . . . , xn) ∈ R

n+1 will be identified with the element x = x0+x = x0+
∑n

ℓ=1 xℓeℓ ∈ Rn called
paravector and the real part x0 of x will also be denoted by Re(x). The norm of x ∈ R

n+1 is defined
as |x|2 = x20 + x21 + . . . + x2n. The conjugate of x is defined by x̄ = x0 − x = x0 −

∑n
ℓ=1 xℓeℓ. We

denote by S the sphere

S = {x = e1x1 + . . . + enxn : x21 + . . .+ x2n = 1};
for j ∈ S we obviously have j2 = −1. Given an element x = x0 + x ∈ R

n+1 let us set jx = x/|x| if
x 6= 0, and given an element x ∈ R

n+1, the set

[x] := {y ∈ R
n+1 : y = x0 + j|x|, j ∈ S}

is an (n−1)-dimensional sphere in R
n+1. The vector space R+ jR passing through 1 and j ∈ S will

be denoted by Cj and an element belonging to Cj will be indicated by u+ jv, for u, v ∈ R. With
an abuse of notation we will write x ∈ R

n+1. Thus, if U ⊆ R
n+1 a function f : U ⊆ R

n+1 → Rn

can be interpreted as a function of the paravector x. With the above notation the definition of
the slice hyperholomorphic functions f : U ⊆ R

n+1 → Rn is analogous to the notion of slice
hyperholomorphic functions for Clifford algebra-valued functions. Precisely we use the Definition
2.9 for Clifford algebra valued-functions, i.e., slice monogenic functions.

Remark 4.2. Assumption 2.1 on the algebra F and the fact that the functions are defined on the
weak cone allow us to consider a large set of possibilities to define the S-functional calculus. We
can also choose a subset of the weak cone in order to define the S-spectrum. For example, we do
not need to take the full weak cone WF when dealing with a Clifford algebra Rn. For our purposes,
when we are working with Rn-valued functions, it is enough to work with a subset of the weak
cone, namely, the paravectors.

So with the definitions of Section 2 we make the following identifications in order to apply the
abstract formulation of the S-functional calculus.

(I) F = Rn,
(II) We consider the sphere S = {x = e1x1 + . . . + enxn : x21 + . . .+ x2n = 1},
(III) In WF we pick the paravectors identified with R

n+1 =
⋃

j∈SCj,

(IV) The involution is s = s0 + s 7→ s = s0 − s, for all s ∈ R
n+1.

17



In this case s0 = Re(s) = 1
2(s + s) and ss = ss = s20 + ... + s2n. The definition of an axially

symmetric set is as in the Clifford setting, i.e., we say that U ⊆ R
n+1 is axially symmetric if [x] ⊂ U

for any x ∈ U .

Then we consider the functional setting for operators. We will consider a real Banach space V
over R with norm ‖ · ‖. By Vn we denote V ⊗Rn over Rn; Vn can be made into a two-sided Banach
module as explained in Section 2. An element in Vn is of the type

∑

A vA ⊗ eA.
We denote by B(V ) the space of bounded R-homomorphisms of the Banach space V to itself

endowed with the natural norm denoted by ‖ · ‖B(V ). Given TA ∈ B(V ), we can introduce the full
Clifford operator

T̂ =
∑

A

TAeA (27)

and its action on v =
∑

B vBeB ∈ Vn as

T̂ (v) =
∑

A,B

TA(vB)eAeB .

The operator T̂ is a right-module homomorphism which is a bounded linear map on Vn and the
norm is given by

‖T̂‖B(Vn) :=
∑

A

‖TA‖B(V ). (28)

The paravector operators are particular Clifford operators of the form T = T0 +
∑n

j=1 ejTj where

Tj ∈ B(V ) for j = 0, 1, . . . , n. So to avoid confusion with the previous literature a (full) Clifford

operator is denoted by T̂ in order to distinguish it from paravectors operators usually denoted by
T . The subset of paravector operators in B(Vn) are usually denoted by B0,1(Vn). Observe that
we have ‖T‖B0,1(Vn) =

∑

j ‖Tj‖B(V ). It is evident from (27) and (28) that if B(V ) is real Banach

algebra, B(Vn) is a Banach algebra over Rn. In the sequel we will omit the subscript B(Vn) in the

norm of an operator. Note also that ‖T̂ Ŝ‖ ≤ ‖T̂‖‖Ŝ‖.
To apply the S-functional calculus to full Clifford operators we choose

Y = Vn = V ⊗ Rn.

So if we let T̂ ∈ B(Vn) and s ∈ R
n+1 the series

+∞
∑

m=0

T̂ms−m−1 and

+∞
∑

m=0

s−m−1T̂m

are called the left and the right S-resolvent operator series associated with the Clifford operator T̂ ,
respectively. The following facts are now a direct consequence of the abstract formulation of the
S-functional calculus.

Theorem 4.3. Let T̂ ∈ B(Vn) and let s ∈ R
n+1 with ‖T̂ ‖ < |s|. Then we have:

(I) The left and right S-resolvent operator series converge in the operator norm.
(II) We have

(

T̂ 2 − 2Re(s)T̂ + |s|2I
)−1

=
+∞
∑

m=0

T̂m
n
∑

k=0

(s)−k−1(s)−m+k−1, (29)

where this series converges in the operator norm.
(III) The left S-resolvent series equals

+∞
∑

m=0

T̂ms−m−1 = −(T̂ 2 − 2Re(s)T̂ + |s|2I)−1(T̂ − sI). (30)
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(IV) The right S-resolvent series equals

+∞
∑

m=0

s−m−1T̂m = −(T̂ − sI)(T̂ 2 − 2Re(s)T̂ + |s|2I)−1. (31)

The definition of the S-spectrum and of the S-resolvent set in this particular case become:

Definition 4.4. Let T̂ ∈ B(Vn). For s ∈ R
n+1, we set

Qs(T̂ ) := T̂ 2 − 2Re(s)T̂ + |s|2I.

We define the S-resolvent set ρS(T̂ ) of T̂ as

ρS(T̂ ) := {s ∈ R
n+1 : Qs(T̂ ) is invertible in B(Vn)}

and we define the S-spectrum σS(T̂ ) of T̂ as

σS(T̂ ) := R
n+1 \ ρS(T̂ ).

For s ∈ ρS(T̂ ), the operator Qs(T̂ )
−1 ∈ B(Vn) is the pseudo-resolvent operator of T̂ at s.

Remark 4.5. For T̂ ∈ B(Vn) an equivalent definition of the S-spectrum is

σS(T̂ ) := {s ∈ R
n+1 : Qs(T̂ ) is not invertible in B(Vn)}

and the S-resolvent set ρS(T̂ ) is defined as

ρS(T̂ ) := R
n+1 \ σS(T̂ ).

Remark 4.6. Observe that in the literature the definition of the S-spectrum for (n + 1)-tuples of
noncommuting operators was referred to paravector operators. In Definition 4.4 the S-spectrum is
defined for operators of the form (27).

Remark 4.7. We make a further observation. Consider a slice monogenic polynomial

P (x) =

M
∑

m=0

xmam, am ∈ Rn

of order M , where x is a paravector. We can define the slice monogenic polynomial of the Clifford
number x̂ ∈ Rn by simply replacing the paravector x by x̂ and we get

P (x̂) =
M
∑

m=0

x̂mam, am ∈ Rn.

Analogously, we can replace the the paravector x by the bounded full Clifford operator T̂ in the
polynomial and we get

P (T̂ ) =

M
∑

m=0

T̂mam, am ∈ Rn.

We can repeat the same reasoning for series instead of polynomials.

Before we define the S-functional calculus, we show that the procedure is actually meaningful
because it is consistent with functions of T̂ that we can define explicitly, that is with the definition
of polynomials of T̂ . In fact this is a consequence of the general theory (see Section 3 for the
notations).
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Lemma 4.8. Let T̂ ∈ B(Vn), let m ∈ N∪{0} and let U ⊂ R
n+1 be a bounded slice Cauchy domain

with σS(T̂ ) ⊂ U . For any imaginary unit j ∈ S we set dsj = ds(−j). So we have

T̂m =
1

2π

∫

∂(U∩Cj)
S−1
L (s, T̂ ) dsj s

m =
1

2π

∫

∂(U∩Cj)
sm dsj S

−1
R (s, T̂ ),

where S−1
L and S−1

R are as in Definition 3.11.

Definition 4.9. Let T̂ ∈ B(Vn). We denote by SML(σS(T̂ )), SMR(σS(T̂ )) and N (σS(T̂ )) the
set of all left, right and intrinsic slice monogenic functions on U where where U is any axially
symmetric domain such that σS(T̂ ) ⊂ U , U ⊂ dom(f) and dom(f) is the domain of the function f .

Definition 4.10 (S-functional calculus for full Clifford operators). Let T̂ ∈ B(Vn). For any
imaginary unit j ∈ S we set dsj = ds(−j). We define

f(T̂ ) :=
1

2π

∫

∂(U∩Cj)
S−1
L (s, T̂ ) dsj f(s), for any f ∈ SML(σS(T̂ )), (32)

and

f(T̂ ) :=
1

2π

∫

∂(U∩Cj)
f(s) dsj S

−1
R (s, T̂ ), for any f ∈ SMR(σS(T̂ )), (33)

where U is as in Definition 4.9.

Theorem 3.18 shows that the S-functional calculus is meaningful because it is consistent with
polynomials of T̂ . As the next crucial result shows, the S-functional calculus is well-defined because
the integrals do not depend on the open set U that contain the S-spectrum and on j ∈ S.

Theorem 4.11. Let T̂ ∈ B(Vn). For any f ∈ SML(σS(T̂ )), the integral in (32) that defines the

operator f(T̂ ) is independent of the choice of the slice Cauchy domain U and of the imaginary unit

j ∈ S. Similarly, for any f ∈ SMR(σS(T̂ )), the integral in (33) that defines the operator f(T̂ ) is
also independent of the choice of U and j ∈ S.

Proof. It is a particular case of Theorem 3.22. �

Theorem 4.12. Let T̂ ∈ B(Vn). If f ∈ N (σS(T̂ )), then both versions of S-functional calculus give

the same operator f(T̂ ). Precisely, we have

f(T̂ ) =
1

2π

∫

∂(U∩Cj)
S−1
L (s, T̂ ) dsj f(s) =

1

2π

∫

∂(U∩Cj)
f(s) dsj S

−1
R (s, T̂ ).

Proof. It is a particular case of Theorem 3.23. �

5. Some properties of the S-functional calculus for bounded Clifford operators

A direct consequence of the definition of the S-functional calculus shows that

Lemma 5.1. Let T̂ ∈ B(Vn).

(I) If f, g ∈ SML(σS(T̂ )) and a ∈ Rn, then

(f + g)(T̂ ) = f(T̂ ) + g(T̂ ) and (fa)(T̂ ) = f(T̂ )a.

(II) If f, g ∈ SMR(σS(T̂ )) and a ∈ Rn, then

(f + g)(T̂ ) = f(T̂ ) + g(T̂ ) and (af)(T̂ ) = af(T̂ ).

The following lemma is important when proving the product rule. The proof can be carried out
in a similar manner to the quaternionic case, see [1].
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Lemma 5.2. Let B ∈ B(Vn). Assume that f is an intrinsic slice monogenic function and U is a
bounded slice Cauchy domain with U ⊂ dom(f), then

1

2π

∫

∂(U∩Cj)
f(s) dsj (sB −Bq)(q2 − 2Re(s)q + |s|2)−1 = Bf(q)

for any q ∈ U and any j ∈ S.

Theorem 5.3. Let T̂ ∈ B(Vn).

(I) (The product rule). Let f ∈ N (σS(T̂ )) and g ∈ SML(σS(T̂ )) or let f ∈ SHR(σS(T̂ )) and

g ∈ N (σS(T̂ )). Then

(fg)(T̂ ) = f(T̂ )g(T̂ ).

(II) Let f ∈ N (σS(T̂ )). If f−1 ∈ N (σS(T̂ )), then f(T̂ ) is invertible and f(T̂ )−1 = f−1(T̂ ).

Proof. (I) The product rule. In the following we check the key facts to show that replacing the

paravector operator T by the full Clifford operator T̂ the proof remain valid. Let f ∈ N (σS(T̂ )),

let g ∈ SML(σS(T̂ )) and let Uq and Us be bounded slice Cauchy domains that contain σS(T̂ )

such that Uq ⊂ Us and Us ⊂ dom(f) ∩ dom(g). The subscripts q and s refer to the respective
variables of integration in the next computation. Let j ∈ S, Γs := ∂(Us ∩Cj) and Γq := ∂(Uq ∩Cj).

Theorem 4.12 allows to express f(T̂ ) using both the left and the right S-resolvent operator as:

f(T̂ )g(T̂ ) =
1

2π

∫

Γs

f(s) dsj S
−1
R (s, T̂ )

1

2π

∫

Γq

S−1
L (q, T̂ ) dqj g(q).

Using the S-resolvent equation we get

f(T̂ )g(T̂ ) =
1

(2π)2

∫

Γs

f(s) dsj

∫

Γq

S−1
R (s, T̂ )qQs(q)

−1 dqj g(q)

− 1

(2π)2

∫

Γs

f(s) dsj

∫

Γq

S−1
L (q, T̂ )qQs(q)

−1 dqj g(q)

− 1

(2π)2

∫

Γs

f(s) dsj

∫

Γq

sS−1
R (s, T̂ )Qs(q)

−1 dqj g(q)

+
1

(2π)2

∫

Γs

f(s) dsj

∫

Γq

sS−1
L (q, T̂ )Qs(q)

−1 dqj g(q),

where Qs(q)
−1 := (q2 − 2Re(s)q + |s|2)−1. Then we have

1

(2π)2

∫

Γs

f(s) dsj

∫

Γq

S−1
R (s, T̂ )qQs(q)

−1dqj g(q)

=
1

(2π)2

∫

Γs

f(s) dsj S
−1
R (s, T̂ )

[

∫

Γq

qQs(q)
−1 dqj g(q)

]

= 0

and

− 1

(2π)2

∫

Γs

f(s) dsj

[

∫

Γq

sS−1
R (s, T̂ )Qs(q)

−1dqj g(q)

]

=− 1

(2π)2

∫

Γs

f(s) dsj s S
−1
R (s, T̂ )

[

∫

Γq

Qs(q)
−1 dqj g(q)

]

= 0
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by Cauchy’s integral theorem since the functions Qs(q)
−1 and qQs(q)

−1 are for any s ∈ Γs right
slice monogenic on an open set that contains Uq since Uq ⊂ Us. So we can write

f(T̂ )g(T̂ ) = − 1

(2π)2

∫

Γs

f(s) dsj

∫

Γq

S−1
L (q, T̂ )qQs(q)

−1 dqj g(q)

+
1

(2π)2

∫

Γs

f(s) dsj

∫

Γq

sS−1
L (q, T̂ )Qs(q)

−1 dqj g(q)

=
1

(2π)2

∫

Γs

∫

Γq

f(s) dsj

[

sS−1
L (q, T̂ )− S−1

L (q, T̂ )q
]

Qs(q)
−1dqj g(q).

The latter integrand is continuous and hence bounded on Γs×Γq. Using Fubini’s theorem to change
the order of integration we obtain

f(T̂ )g(T̂ ) =
1

(2π)2

∫

Γq

[
∫

Γs

f(s) dsj [sS
−1
L (q, T̂ )− S−1

L (q, T̂ )q]Qs(q)
−1

]

dqj g(q).

By Lemma 5.2 with B = S−1
L (q, T̂ ), we get

f(T̂ )g(T̂ ) =
1

2π

∫

Γq

S−1
L (q, T̂ ) dqj f(q)g(q) = (fg)(T̂ ).

The product rule for the S-functional calculus for right-slice hyperholomorphic functions can be
shown with similar computations.

Point (II). From the product rule in point (I), we deduce that

I = 1(T̂ ) =
(

ff−1
)

(T̂ ) = f(T̂ )f−1(T̂ )

if we consider f and f−1 as left-slice monogenic functions and

I = 1(T̂ ) =
(

f−1f
)

(T̂ ) = f−1(T̂ )f(T̂ )

if we consider them as right-slice monogenic functions. We conclude that f(T̂ ) is invertible with

f−1(T̂ ) = f(T̂ )−1.
�

The S-functional calculus for Clifford operators T̂ defines the Clifford-Riesz projectors. Thus we
can identify invariant subspaces of T̂ that are associated with sets of spectral values.

Theorem 5.4 (Clifford-Riesz projectors). Let T̂ ∈ B(Vn) and assume that σS(T̂ ) = σ1 ∪ σ2 with

dist(σ1, σ2) > 0.

We choose an open axially symmetric set O with σ1 ⊂ O and O ∩ σ2 = ∅ and define χσ1
(s) = 1 for

s ∈ O and χσ2
(s) = 0 for s /∈ O. Then χσ1

∈ N (σS(T )) and

Pσ1
:= χσ1

(T̂ ) =
1

2π

∫

∂(O∩Cj)
S−1
L (s, T ) dsj

is a continuous projection that commutes with T̂ . Hence, Pσ1
Vn is a right linear subspace of Vn

that is invariant under T̂ .

Proof. Since the function χσ1
belongs to N (σS(T )) by Theorem 5.3, we have

P 2
σ1

= χσ1
(T̂ )χσ1

(T̂ ) = (χσ1
χσ1

)(T̂ ) = χσ1
(T̂ ) = Pσ1

,

and Pσ1
is a projection in B(Vn). Since it is right-linear, its range Pσ1

Vn is a closed right linear
subspace of Vn. Moreover, we have

T̂ Pσ1
= s(T̂ )χσ1

(T̂ ) = (sχσ1
)(T̂ ) = (χσ1

s)(T̂ ) = χσ1
(T̂ )s(T̂ ) = Pσ1

T̂ .
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Thus

T̂ v = T̂ Pσ1
v = Pσ1

T̂ v for all v ∈ Pσ1
Vn

hence Pσ1
Vn is invariant under T̂ .

�

The spectral mapping theorem does not hold for arbitrary slice monogenic functions, but only
for those slice monogenic functions that preserve the fundamental geometric property of the S-
spectrum, namely its axially symmetry (see Proposition 3.10). So we are limited to intrinsic slice
monogenic functions that are the only functions that preserve this property.

Theorem 5.5 (The Spectral Mapping Theorem). Let T̂ ∈ B(Vn) and let f ∈ N (σS(T̂ )). Then

σS(f(T̂ )) = f(σS(T̂ )) = {f(s) : s ∈ σS(T̂ )}.
Proof. Let U be a bounded slice Cauchy domain as in Definition 4.9 and let s = u + jv ∈ σS(T ).
For q ∈ U \ [s], we define

g̃(q) = (q2 − 2Re(s)q + |s|2)−1(f(q)2 − 2Re(f(s))f(q) + |f(s)|2).
This function is the product of

q 7→ f(q)2 − 2Re(f(s))f(q) + |f(s)|2,
which is intrinsic and slice monogenic, with the rational intrinsic function (q2 − 2Re(s)q + |s|2)−1.
So g̃ is an intrinsic slice monogenic function where it is defined, namely g̃ belongs to N (U) \ [s].

The function g̃ extends to the function g ∈ N (U) defined by

g(q) =

{

g̃(q) if q ∈ U \ [s],
(∂Sf(s))

2 if q = s

where ∂Sf(s) is the slice derivative of f . Obviously, g is an intrinsic slice function and gi = g|U∩Ci

is holomorphic on U ∩Ci for any i ∈ S, so the function g is also slice monogenic. The product rule
implies

f(T̂ )2 − 2Re(f(s))f(T̂ ) + |f(s)|2I = (T̂ 2 − 2Re(s)T̂ + |s|2I)g(T̂ ).
If the operator f(T̂ )2 − 2Re(f(s))f(T̂ ) + |f(s)|2I was invertible, then

g(T̂ )(f(T̂ )2 − 2Re(f(s))f(T̂ ) + |f(s)|2I)−1

would therefore be the inverse of T̂ 2 − 2Re(s)T̂ + |s|2I. But since we assumed s ∈ σS(T̂ ), this is

impossible and hence f(s) ∈ σS(f(T̂ )). Thus

f(σS(T̂ )) ⊆ σS(f(T̂ )).

If s /∈ f(σS(T̂ )), then we can consider the function

h(q) := (f2(q)− 2Re(s)f(q) + |s|2)−1.

which is an intrinsic slice monogenic function. Its singularities are the spheres [q] ⊂ U such that

f([q]) = [f(q)] = [s]. But since we assumed s /∈ f(σS(T )), h does not have singularities on σS(T̂ ),

h ∈ N (σS(T̂ )) and Theorem 5.3 point (II) implies

h(T̂ ) =
(

f(T̂ )2 − 2Re(s)f(T̂ ) + |s|2
)−1

∈ B(Vn).

We deduce that s ∈ ρS(T̂ ) and

σS(f(T̂ )) ⊆ f(σS(T̂ )).

�
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Now we show the spectral mapping theorem for the S-functional calculus of a Clifford operator.
The next definition is standard:

Definition 5.6. Let T̂ ∈ B(Vn). Then the S-spectral radius of T̂ is defined to be the nonnegative
real number

rS(T̂ ) := sup{|s| : s ∈ σS(T̂ )}.

Theorem 5.7. For T̂ ∈ B(Vn), we have

rS(T̂ ) = lim
m→+∞

‖T̂m‖ 1

m .

Proof. The function defined by q 7→ q−1 is evidently intrinsic and slice monogenic, so we can
consider the composition function q 7→ S−1

L (q−1, T̂ ) which is slice monogenic on the set

U := {q ∈ R
n+1 : q−1 ∈ ρS(T̂ )}.

The set U contains the ball B1/rS(T )(0), in fact R
n+1 \ BrS(T )(0) ⊂ ρS(T̂ ), and so the function

S−1
L (q−1, T̂ ) admits a power series expansion at 0 that converges on B1/rS(T̂ )(0):

S−1
L

(

q−1, T̂
)

=
+∞
∑

m=0

T̂mqm+1, |q| < 1

rS(T̂ )
.

For s such that |s| > rS(T ), we have
∥

∥

∥
T̂ms−m−1

∥

∥

∥
→ 0 as m → +∞ because the above series

converges. In particular

C(s) = sup
m∈N

‖T̂ms−m−1‖ < +∞.

Therefore

lim sup
m→+∞

‖T̂m‖ 1

m
1

|s| = lim sup
m→+∞

‖T̂m‖ 1

m |s|−m+1

m = lim sup
m→+∞

‖T̂ms−m−1‖ 1

m ≤ lim sup
m→+∞

C(s)
1

m = 1,

and hence lim supm→+∞ ‖T̂m‖ 1

m ≤ |s|. Since s satisfies |s| > rS(T̂ ), we obtain

lim sup
m→+∞

‖T̂m‖ 1

m ≤ rS(T̂ ).

Moreover, Theorem 5.5 implies σS(T̂
m) = σS(T̂ )

m, so Theorem 3.14 yields that

rS(T̂ )
m = sup{|s|m : s ∈ σS(T )} = sup{|s| : s ∈ σS(T̂

m)} = rS(T̂
m) ≤ ‖T̂m‖

for any n ∈ N. Therefore, we get

rS(T̂ ) ≤ lim inf
m→+∞

‖T̂m‖ 1

m ≤ lim sup
m→+∞

‖T̂m‖ 1

m ≤ rS(T̂ ) (34)

and rS(T̂ ) = limm→∞ ‖T̂m‖ 1

m , where (34) also implies the existence of the limit. �

Given two slice monogenic functions, in general it is not possible to define their composition.
In order to do, the second function has to be intrinsic. The spectral mapping theorem allows to
generalize the composition rule.

Theorem 5.8 (Composition rule). Let T̂ ∈ B(Vn) and let f ∈ N (σS(T̂ )). If g ∈ SML(σS(f(T̂ ))

then g ◦ f ∈ SML(σS(T̂ )) and if g ∈ SMR(f(σS(T̂ ))) then g ◦ f ∈ SMR(σS(T̂ )). In both cases

g(f(T̂ )) = (g ◦ f)(T̂ ).
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Proof. If g ∈ SML(f(σS(T̂ ))), then dom(g) can be chosen open and axially symmetric. Since f
is continuous and intrinsic, the inverse image of any open axially symmetric set under f is again
open and axially symmetric. Thus f−1(dom(g)) is an axially symmetric open set containing σS(T̂ )

as f(σS(T̂ )) = σS(f(T̂ )) ⊂ dom(g) by Theorem 5.5.
Since f ∈ N the composition g ◦ f is a left slice monogenic function with domain f−1(dom(g))

and so g ◦ f ∈ SML(σS(T̂ )).

Let U be a bounded slice Cauchy domain such that σS(T̂ ) ⊂ U and U ⊂ dom(f) and let W be

another bounded slice Cauchy domain such that σS(T̂ ) ⊂ f(U) ⊂ W and W ⊂ dom(g). Since f is
intrinsic, the map s 7→ S−1

L (q, f(s)) is left slice monogenic on

{s ∈ dom(f) : f(s) /∈ [q]} = {s ∈ dom(f) : q /∈ [f(s)]}.
If q /∈ σS(f(T̂ )) = f(σS(T̂ )), then s 7→ S−1

L (q, f(s)) belongs to SML(σS(T̂ )). By the properties of
the S-functional calculus, we have

S−1
L (q, f(T̂ )) =−Qq(f(T̂ ))

−1(f(T̂ )− qI)

=
1

2π

∫

∂(U∩Cj)
S−1
L (s, T̂ ) dsj

[

−Qq(f(s))
−1(f(s)− q)

]

=
1

2π

∫

∂(U∩Cj)
S−1
L (s, T̂ ) dsj S

−1
L (q, f(s))

with Qs(f(s))
−1 = (f(s)2 − 2Re(q)f(s) + |q|2)−1 and an arbitrary j ∈ S. Therefore

g(f(T̂ )) =
1

2π

∫

∂(W∩Cj)
S−1
L (q, f(T̂ )) dqj g(q)

=
1

2π

∫

∂(W∩Cj)

[

1

2π

∫

∂(U∩Cj)
S−1
L (s, T̂ ) dsj S

−1
L (q, f(s))

]

dqj g(q).

Since the latter integrand is continuous and hence bounded on the compact set ∂(W∩Cj)×∂(U∩Cj),
we can apply Fubini’s theorem to change the order of integration and obtain

g(f(T̂ )) =
1

2π

∫

∂(U∩Cj)
S−1
L (s, T̂ ) dsj

[

1

2π

∫

∂(W∩Cj)
S−1
L (p, f(s)) dpj g(p)

]

=
1

2π

∫

∂(U∩Cj)
S−1
L (s, T̂ ) dsj g(f(s))

=
1

2π

∫

∂(U∩Cj)
S−1
L (s, T̂ ) dsj (g ◦ f)(s) = (g ◦ f)(T̂ ).

�

6. Noncommuting matrix variables and some final remarks

The results of the previous section can be of interest for the community working in free analysis
and in free probability. In fact, as a particular case, we can consider (n+1) noncommuting matrices.
Precisely, let Xj ∈ R

d×d, for d ∈ N and let us make the identification

(X0,X1, ...,Xn) → X =

n
∑

j=0

Xjej

where e1, . . . , en are generators of the Clifford algebra Rn. Then Theorem 3.7 becomes:
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Theorem 6.1. Let X ∈ R
d×d ⊗ Rn, where ⊗ denotes the algebraic tensor product, and s ∈ R

n+1

with ‖X‖ < |s|.
(I) The left S-resolvent series equals

+∞
∑

m=0

Xms−m−1 = −(X2 − 2Re(s)X+ |s|2Id×d)
−1(X− sId×d).

(II) The right S-resolvent series equals

+∞
∑

m=0

s−m−1Xm = −(X− sId×d)(X
2 − 2Re(s)X+ |s|2Id×d)

−1.

Then the S-spectrum of the noncommuting matrices (X0,X1, ...,Xn) is defined as:

Definition 6.2. Let X =
∑

j Xjej ∈ R
d×d ⊗Rn and take s ∈ R

n+1. We define the S-spectrum of

the X ∈ R
d×d ⊗ Rn as

σS(X) = {s ∈ R
n+1 : X2 − 2Re(s)X+ |s|2Id×d is not invertible in R

d×d ⊗ Rn}
and the S-resolvent set as

ρS(X) = R
n+1 \ σS(X).

The resolvent operators are:

Definition 6.3 (The S-resolvent operators). Let X ∈ C
d×d ⊗ Rn . For s ∈ ρS(X), we define the

left S-resolvent operator as

S−1
L (s,X) = −(X2 − 2Re(s)X+ |s|2Id×d)

−1(X− sId×d),

and the right S-resolvent operator as

S−1
R (s,X) = −(X− sId×d)(X

2 − 2Re(s)X+ |s|2Id×d)
−1.

Via the S-functional calculus we can define hyperholomorphic functions of the noncommuting
matrices X. In particular the case of intrinsic functions contains all special functions that have a
power series expansion, e.g., the exponential, sine, cosine, Bessel, more in general hypergeometric
functions to name a few.

We conclude this section with some connections of the spectral theory on the S-spectrum and
other research fields. We mention below some directions in which the S-functional calculus has been
developed. We wish to stress that the main conclusions in this paper allow one to abstract any
result on the S-functional calculus below to a setting where one may embed an n-tuple (T1, . . . , Tn)
of bounded operators acting on a Banach real space into an operator acting on a Banach module

over Rm, with m ≥ log(n)
log(2) , or more generally on any Banach module over a left complex structure

(LSCS) algebra with dimension greater than or equal to n (and not just as a paravector operator).
Note that the choice of the embedding is highly non-canonical and may be purpose driven.

Remark 6.4. First of all we would like to mention that, in the quaternionic case, there have been
important developments in Schur analysis in the slice hyperholomorphic setting. The material is
organized in the book [6] and in the references therein. The quaternionic S-functional calculus is
better developed and full treated in [15, 25]. Fractional powers of vector operators and applications
have been largely investigated in the papers [11, 12, 20] and in the book [14]. The H∞-functional
calculus was further extended in [13] following the book [36]. For more recent developments asso-
ciated with quaternionic quantum mechanics see [42, 43].
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Remark 6.5. In the Clifford algebra setting, the theory is based on slice monogenic functions which
were developed in the book [25] starting from the paper [24], and the S-functional calculus for
paravector operators was originally developed in [23]. More advances in spectral theory in the
Clifford setting can be found in [5] in which the H∞-functional calculus has been extended to this
setting.

Remark 6.6. The F -functional calculus [15, 21] is a link between the spectral theory on the S-
spectrum and the monogenic spectral theory [37, 38, 39, 41, 45], see also the books [44, 46]. The
seminal paper on the H∞-functional calculus is [40]. The F -functional calculus is based on the
Fueter-Sce-Qian mapping theorem, a natural relation between slice monogenic and monogenic func-
tions, see the books [27, 46]. Another link between slice monogenic functions and the classical
monogenic functions can be found in [19] using the method of the Radon transform.
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