Complications related to vascular damage such as intra-operative bleeding may be avoided during neurosurgical procedures such as petroclival meningioma surgery. To address this and improve the patient's safety, we designed a real-time blood vessel avoidance strategy that enables operation on deformable tissue during petroclival meningioma surgery using Micron, a handheld surgical robotic tool.
Real-time vessel segmentation and reconstruction for virtual fixtures for an active handheld microneurosurgical instrument
De Momi, Elena;
2022-01-01
Abstract
Complications related to vascular damage such as intra-operative bleeding may be avoided during neurosurgical procedures such as petroclival meningioma surgery. To address this and improve the patient's safety, we designed a real-time blood vessel avoidance strategy that enables operation on deformable tissue during petroclival meningioma surgery using Micron, a handheld surgical robotic tool.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
Real-time vessel segmentation and reconstruction.pdf
Accesso riservato
:
Publisher’s version
Dimensione
1.5 MB
Formato
Adobe PDF
|
1.5 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


