Bayesian Optimization is a promising method for efficiently finding optimal cloud computing configurations for big data applications. Machine Learning methods can provide useful knowledge about the application at hand thanks to their predicting capabilities. In this paper, we propose a hybrid algorithm that is based on Bayesian Optimization and integrates elements from Machine Learning techniques to tackle time-constrained optimization problems in a cloud computing setting.
L'ottimizzazione bayesiana è un metodo promettente per trovare configurazioni ottimali di applicazioni big data eseguite su cloud. I metodi di machine learning possono fornire informazioni utili sull'applicazione in oggetto grazie alle loro capacità predittive. In questo articolo, proponiamo un algoritmo ibrido basato sull'ottimizzazione bayesiana che integra tecniche di machine learning per risolvere problemi di ottimizzazione con vincoli di tempo in sistemi di cloud computing.
Bayesian optimization with machine learning for big data applications in the cloud
B. Guindani;D. Ardagna;A. Guglielmi
2022-01-01
Abstract
Bayesian Optimization is a promising method for efficiently finding optimal cloud computing configurations for big data applications. Machine Learning methods can provide useful knowledge about the application at hand thanks to their predicting capabilities. In this paper, we propose a hybrid algorithm that is based on Bayesian Optimization and integrates elements from Machine Learning techniques to tackle time-constrained optimization problems in a cloud computing setting.File | Dimensione | Formato | |
---|---|---|---|
SIS2022_published.pdf
accesso aperto
Descrizione: Articolo
:
Publisher’s version
Dimensione
521.67 kB
Formato
Adobe PDF
|
521.67 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.