We propose a non-intrusive deep learning-based reduced order model (DL-ROM) capable of capturing the complex dynamics of mechanical systems showing inertia and geometric nonlinearities. In the first phase, a limited number of high fidelity snapshots are used to generate a POD-Galerkin ROM which is subsequently exploited to generate the data, covering the whole parameter range, used in the training phase of the DL-ROM. A convolutional autoencoder is employed to map the system response onto a low-dimensional representation and, in parallel, to model the reduced nonlinear trial manifold. The system dynamics on the manifold is described by means of a deep feedforward neural network that is trained together with the autoencoder. The strategy is benchmarked against high fidelity solutions on a clamped-clamped beam and on a real micromirror with softening response and multiplicity of solutions. By comparing the different computational costs, we discuss the impressive gain in performance and show that the DL-ROM truly represents a real-time tool which can be profitably and efficiently employed in complex system-level simulation procedures for design and optimization purposes.
Deep learning-based reduced order models for the real-time simulation of the nonlinear dynamics of microstructures
Fresca, S;Gobat, G;Frangi, A;Manzoni, A
2022-01-01
Abstract
We propose a non-intrusive deep learning-based reduced order model (DL-ROM) capable of capturing the complex dynamics of mechanical systems showing inertia and geometric nonlinearities. In the first phase, a limited number of high fidelity snapshots are used to generate a POD-Galerkin ROM which is subsequently exploited to generate the data, covering the whole parameter range, used in the training phase of the DL-ROM. A convolutional autoencoder is employed to map the system response onto a low-dimensional representation and, in parallel, to model the reduced nonlinear trial manifold. The system dynamics on the manifold is described by means of a deep feedforward neural network that is trained together with the autoencoder. The strategy is benchmarked against high fidelity solutions on a clamped-clamped beam and on a real micromirror with softening response and multiplicity of solutions. By comparing the different computational costs, we discuss the impressive gain in performance and show that the DL-ROM truly represents a real-time tool which can be profitably and efficiently employed in complex system-level simulation procedures for design and optimization purposes.File | Dimensione | Formato | |
---|---|---|---|
Numerical Meth Engineering - 2022 - Fresca - Deep learningâ based reduced order models for the realâ time simulation of the.pdf
accesso aperto
Descrizione: Publisher's version
:
Publisher’s version
Dimensione
6.7 MB
Formato
Adobe PDF
|
6.7 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.