In this paper, we deal with two-dimensional cubic Dirac equations, appearing as an effective model in gapped honeycomb structures. We give a formal derivation starting from cubic Schrödinger equations and prove the existence of standing waves bifurcating from one band-edge of the linear spectrum.

Bifurcating standing waves for effective equations in gapped honeycomb structures

William Borrelli;
2021-01-01

Abstract

In this paper, we deal with two-dimensional cubic Dirac equations, appearing as an effective model in gapped honeycomb structures. We give a formal derivation starting from cubic Schrödinger equations and prove the existence of standing waves bifurcating from one band-edge of the linear spectrum.
2021
Bifurcation methods
Existence results
Honeycomb structures
Nonlinear dirac equations
File in questo prodotto:
File Dimensione Formato  
BifurcatingWaves- Nanosystems2021.pdf

Accesso riservato

: Publisher’s version
Dimensione 238.99 kB
Formato Adobe PDF
238.99 kB Adobe PDF   Visualizza/Apri
11311-1221304_Borrelli.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 208.39 kB
Formato Adobe PDF
208.39 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1221304
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact